径向基神经网络(RBF)回归预测MATLAB实现超详细

        在机械学习算法的过程中,我们常用到一种神经网络就是径向基神经网络,这是一种使用径向基函数作为激活函数的人工神经网络。这种神经网络也有很多用途,比如时间序列预测、数据分类以及回归预测等等,今天主要讲解径向基神经网络在MATLAB的实现过程,对径向基神经网络的原理,在这里就不再进行陈述了。需要代码的小伙伴可以加703049381。接下来我们进入正题吧。

第一步:清空变量和环境,提高计算速度。

 

第二步:加载数据,这里我将数据集分为两部分,分别为训练集和测试集,假设有8列数据,那么前7列为输入值,最后一列为输出值,代码主要实现多输入单输出。

 

第三步:对训练集和测试集进行归一化处理,将所有的数据归一到同一量纲上,减少噪声和提高精度。

第四步:创建径向基网络,调用MATLAB自带工具箱newrbe,设置径向基函数的拓展速度即可。

 

第五步:在训练完神经网络之后下一步我们就可以利用神经网络进行预测了,只需要使用sim函数进行预测,带入输入值进入神经网络内即可进行预测。

 

第六步:因为我们在之前对数据进行了归一化出入,得到的数据都是归一化后的数据,所以在这里需要对预测的结果进行反归一化的处理,得到真实值。

第七步:计算相关误差指标,绘制图形。

 

 

最后,给大家展示运行效果图:

 

 

 

径向基神经网络RBF)是一种常用的神经网络,常用于回归和分类任务。其特点是具有自适应的非线性映射能力,能够拟合各种复杂的非线性函数,并且具有较好的泛化能力。 在MATLAB中,可以通过以下代码进行RBF回归预测: 1. 加载数据 首先需要加载需要进行回归预测的数据,可以使用MATLAB中的load函数,例如: data = load('data.txt'); 其中,data.txt是存储数据的文件名,需要保证数据的格式正确。 2. 分离数据 将数据分成训练集和测试集,可以使用MATLAB中的crossvalind函数,例如: cv = crossvalind('Kfold', size(data, 1), 10); trainData = data(cv ~= 1, :); testData = data(cv == 1, :); 其中,将数据分成了10份,cv~=1表示排除第一份,cv==1表示第一份。 3. 训练模型 使用MATLAB中的newrb函数进行RBF网络的训练,例如: net = newrb(trainData(:, 1:end-1)', trainData(:, end)', 0, 1, 10, 1); 其中,trainData(:, 1:end-1)表示取数据的前n-1列作为输入,trainData(:, end)表示取数据的最后一列作为输出。0, 1, 10, 1分别表示误差目标、学习速率、隐藏层神经元个数和正则化参数。 4. 进行预测 使用MATLAB中的simulate函数进行预测,例如: predict = sim(net, testData(:, 1:end-1)'); 其中,testData(:, 1:end-1)表示取数据的前n-1列作为输入。 5. 评价模型 使用MATLAB中的regperf函数对模型进行评价,例如: MSE = regperf(predict', testData(:, end)) 其中,MSE表示均方误差。 以上就是使用MATLAB实现径向基神经网络RBF回归预测的全部代码。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB实践家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值