【数学建模】面包店老板使日均收入最大化的诀窍

1 问题描述

面包店每天烘烤一定数量的面包出售,每个成本3元,以8元的价格卖出,晚间关门前将未卖完的面包无偿处理掉,若已知每天面包需求量的概率分布如下表所示。从长期看,面包店老板为了能得到最高的日均收入,他每天要烘烤多少个面包?这个最高日均收入是多少?

表-1 面包日需求量概率分布
需求量/个 50 100 150 200 250
概率 0.2 0.3 0.2 0.2 0.1

2 问题分析与符号定义

从问题描述中可知,面包店一天的收入为:已售出的面包数量×(8-3)-未卖完的面包数×3

引入以下符号定义:

s_{1}:售出一个面包而获得的利润

s_{2}:未卖完一个面包而损失的利润

r:面包日需求量

f(r):日需求量r的概率分布

q:一天烘烤的面包数量

因当天的收入与当天烘烤的面包数量和当天面包的需求量紧密相关,所以记一天的收入为s(r,q),即s是关于rq的函数。

3 建立模型

日收入情况讨论分析:

(1) 当需求小于等于供给时,

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

遥望山海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值