梯度下降法求解感知机模型
1. 感知机学习模型
感知机是一个二分类的线性分类问题,求解是使误分类点到超平面距离总和的损失函数最小化问题,详细内容参见《线性分类模型--感知机》。采用的是随机梯度下降法,首先任意选取一个超平面w0和b0,然后用梯度下降法不断地极小化目标损失函数,极小化过程中不是一次使所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降。假设误分类点集合M是固定的,那么损失函数L(w,b)的梯度:
随机选取一个误分类点,对w和b进行更新:
其中n是步长,又称为学习率(learning rate),这样通过迭代可以使损失函数L(w,b)不断减小,直到训练集中没有误分类点。直观的解释:当一个实例点被误分类,即位于超平面的错误一侧时,则调整w和b的值,使分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面间的距离,直至超平面越过该分类点使其正确分类[1]。注意:当训练数据集线性可分时,这个迭代是收敛的,也就是经过有限次数的迭代是可以找到最优的超平面的[1]。下面就详细讲解这个迭代的过程。