6、C语言增强与LINQ to Objects详解

C#语言增强与LINQ to Objects详解

1. C#语言为LINQ的增强特性

1.1 特性概述

Microsoft的C#团队为C#添加了许多专门为LINQ设计的增强特性,即便不使用LINQ,这些新特性也有很大的价值。以下是一些重要的特性:
- 对象和集合初始化表达式 :使得填充静态、示例或测试数据变得比以前容易得多,显著减少了创建数据所需的代码行数。结合新的 var 关键字和匿名类型,能更轻松地动态创建数据和数据类型。
- 扩展方法 :可以为对象(如密封类或没有源代码的类)添加功能,这在以前是无法实现的。
- Lambda表达式 :允许简洁地指定功能,虽然不能完全替代匿名方法,但增加了指定简单功能的方式,其语法简洁,随着时间和经验的积累,会逐渐被大家所喜爱。
- 表达式树 :为希望让其专有数据存储支持LINQ的第三方供应商提供了实现一流性能的能力。
- 部分方法 :提供了一种非常轻量级的事件处理机制,可用于在关键时间点挂钩到实体类。
- 查询表达式 :让初次看到LINQ查询时有一种亲切的感觉,使LINQ更具吸引力。通过让LINQ查询类似于SQL查询,降低了开发者学习的门槛。

1.2 示例代码

以下是一个简单的LINQ to Objects查询示例:

s
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)内容概要:本文围绕使用Pytorch框架搭建神经网络,重点研究基于DQN算法、优先级采样的DQN算法以及DQN人工势场相结合的方法在避障控制中的应用,提供了Matlab和Python的实现代码。文档还涵盖多种智能优化算法、机器学习深度学习模型、路径规划技术、无人机控制、电力系统管理等多个科研方向的技术实现仿真研究,展示了丰富的MATLAB/Simulink应用场景和前沿算法的代码复现,旨在为科研工作者提供全面的技术支持实践参考。; 适合人群:具备一定编程基础,熟悉Python或Matlab语言,从事人工智能、自动化、控制工程、机器人、电力系统等相关领域的研究生、科研人员及工程师。; 使用场景及目标:①学习和实现强化学习在机器人或无人机避障中的具体应用;②掌握DQN及其改进算法(如优先级采样)的设计训练流程;③结合传统人工势场法提升智能体避障能力;④获取多种高热度科研方向(如微电网优化、故障诊断、路径规划等)的代码实现复现方案,助力论文撰写项目开发; 阅读建议:建议按目录顺序系统性学习,重点关注DQN人工势场融合的避障策略实现细节,结合提供的网盘资源下载完整代码进行调试实验,同时可拓展学习文中提及的多种优化算法深度学习模型的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值