网络安全中的入侵检测与JavaScript混淆攻击检测
基于反向传播神经网络的入侵检测
在网络安全领域,入侵检测是保障系统安全的重要手段。基于反向传播神经网络(BPNN)的入侵检测方法具有独特的优势。
独立成分分析(ICA)基础
独立成分分析是一种重要的特征选择技术。其公式为 (p(s) = p(a(s))) ,其中 (p(a(.))) 是边际分布, (p(s)) 是 (n) 维向量 (s) 的联合分布。通常,执行独立成分分析的技术可表示为推导特定 (W) 的技术,即 (Y = Wx) ,使得 (y) 的每个分量相互独立。若个体边际分布是非高斯的,且能获得这样的 (W) ,则推导的边际密度将成为原始密度函数的缩放排列。寻找 (W) 的一种通用学习技术为 (\Delta W = \eta (I - \Phi(y)y^T)W) ,其中 (\Phi(y)) 是输出向量 (y) 的非线性函数(如三次多项式、奇数次多项式、奇数次多项式之和或S形函数)。
基于BPNN的入侵检测模型
该模型主要分为训练阶段和检测阶段,具体流程如下:
1. 训练阶段 :
- 带有大量预设特征(如数据包长度、连接持续时间、SYN/ACK比率等)的标记网络流量数据被输入到基于ICA的特征选择引擎。
- 获得缩减的特征子集后,使用标记数据集和所选特征构建用于入侵检测的BPNN分类器。
2. 检测阶段 :网络流量数据在根据特征子集进行预处理后,直接发送到BPNN分类器进行入侵检测。
这个轻量级模型的最大优势在于,通过基于ICA的特征选择,