三维重建公开数据集整理(MVS篇)

本文整理了多个用于三维重建的MVS数据集,包括来自知名公司的Pix4d、Aigsoft,开源项目Colmap、OpenMVG,以及学术机构如港科大、丹麦技术大学和日本东北大学等提供的数据集。涵盖了无人机航拍、文物保护、小物体重建等多种场景,为研究者和开发者提供了丰富的资源。
摘要由CSDN通过智能技术生成

三维重建公开数据集整理(MVS篇),不定期更新。
同步到Github仓库:https://github.com/ethan-li-coding/Datasets-of-MVS-reconstruction

数据集都有自己的版权,发表论文请留意数据提供商是否需要引用,商用请留意版权协议。

文章目录

固定翼无人机数据集 https://www.sensefly.com/education/datasets/

轻型固定翼无人机公司sensefly公开的数据集,有RGB、多光谱、热红外。
在这里插入图片描述

著名的摄影测量公司Pix4d的公开数据集 https://cloud.pix4d.com/demo

在这里插入图片描述

著名的摄影测量公司Aigsoft的公开数据集 https://www.agisoft.com/downloads/sample-data/

在这里插入图片描述

著名的开源项目Colmap所公开的数据集 http://colmap.github.io/datasets.html

在这里插入图片描述

著名的开源库OpenMVG所提供的的公开数据集 https://github.com/openMVG/Image_datasets

在这里插入图片描述

瑞士的一家生产固定翼测绘无人机的公司公开的数据集 https://wingtra.com/mapping-drone-wingtraone/aerial-map-types/

在这里插入图片描述

著名的Arcgis公司公开的数据集 https://doc.arcgis.com/en/drone2map/get-started/sample-data.htm

其中36张的Building数据很经典
在这里插入图片描述

港科大开源的大量数据集,有建筑、雕塑、近景等各类数据 https://github.com/YoYo000/BlendedMVS

在这里插入图片描述
(图片来自https://github.com/kwea123/BlendedMVS_scenes)

一个旨在文物保护的公开数据集,比较冷门 https://openheritage3d.org/data

里面有RGB和Lidar数据,有很多项目是提供RGB彩色数据的,但是大多是数码相机拍摄,没有GPS或者RTK
在这里插入图片描述

丹麦技术大学Technical University of Denmark提供的公开数据集 https://roboimagedata.compute.dtu.dk/?page_id=36

难能可贵的是他们还提供结构光扫描数据作为真值,还有不同的光线变化,作为小物体MVS重建是很不错的数据集
在这里插入图片描述

日本东北大学Tohoku University提供的公开数据集 http://www.aoki.ecei.tohoku.ac.jp/mvs/

同样是小物体重建,只有两个,拍摄的猫和狗的模型,同时提供了真值
在这里插入图片描述

对于深度学习三维重建(Multi-View Stereo,MVS),最常用的方法之一是使用卷积神经网络(Convolutional Neural Networks,CNN)进行处理。MVS 是通过从多个视角的图像中恢复场景的三维几何形状。下面是一个使用深度学习进行 MVS 的基本步骤: 1. 数据准备:收集多个视角的图像,并估计它们之间的相机姿态。通常会使用结构光或者多视角立体摄影机等硬件设备来获取这些信息。 2. 特征提取:对每个图像进行特征提取,例如使用卷积神经网络(CNN)提取图像的特征表示。常用的网络架构包括 VGG、ResNet、或者用于图像配准的特定架构。 3. 匹配:在每个视角中,将图像特征与其他视角中的特征进行匹配,以找到对应的特征点。这可以通过计算特征之间的相似度,例如使用光流法或者局部特征描述子。 4. 深度估计:使用匹配的图像特征来估计每个像素点的深度值。这可以通过训练一个深度估计网络,将图像中每个像素处的特征输入网络,预测其深度值。 5. 高级优化:对估计的深度图进行后处理和优化,以提高重建结果的精度和稳定性。这可以包括平滑滤波、边缘保持、去除噪声等技术。 总体而言,深度学习在MVS中的应用可以显著提高重建的精度和效率,但也需要大量的训练数据和计算资源来实现。在实际应用中,还需要考虑场景复杂性、纹理信息和光照变化等因素,以获取更准确的三维重建结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值