常见的三角函数公式

毕业之后用不到数学知识了,导致了现在看公式就像天书一样,所以不得不重新回顾一下公式,故此分析一下,以免以后再忘记。

两角和公式

在这里插入图片描述

和差化积

在这里插入图片描述

积化和差

在这里插入图片描述

<think>好的,用户需要查找三角函数公式。首先,我需要整理常见且重要的公式,按照类别划分,比如基本恒等式、和差角公式、倍角半角公式等。根据系统指令,所有行内数学表达式要用$...$,独立公式用$$...$$,并且要正确使用LaTeX语法。同时要引用提供的参考资料,比如引用[^1]和[^2]。 先从基本恒等式开始,包括平方关系和商数关系。例如,$\sin^2x + \cos^2x = 1$,这里要确保符号正确。然后是倒数关系,比如$\tan x = \frac{\sin x}{\cos x}$。 接下来是和差角公式,这部分在引用中有提到两角和公式,需要列出$\sin(A \pm B)$和$\cos(A \pm B)$,以及$\tan$的公式。注意符号是否正确,比如$\cos(A - B)$是$\cos A \cos B + \sin A \sin B$。 然后是倍角公式,比如$\sin 2A = 2\sin A \cos A$,还有半角公式,这里需要用$$...$$来单独成段,例如$$\cos^2 \frac{A}{2} = \frac{1 + \cos A}{2}$$。 接下来可能需要积化和差与和差化积公式,这些也是重点,但用户提供的引用中没有详细列出,需要确认是否必要。不过根据用户的问题,尽量覆盖常用内容。 辅助角公式也很实用,比如$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \phi)$,这里要正确写出公式并解释$\phi$的计算。 在引用时,要注意在相关段落末尾自然地加上引用标识,例如在基本恒等式后加上[^1],在提到两角和公式时引用。 同时,生成相关问题需要考虑用户可能想深入了解的内容,比如推导过程、记忆口诀、应用实例等。例如,如何推导和差角公式?如何用口诀记忆诱导公式三角函数在物理中的应用? 需要检查所有LaTeX语法是否正确,比如积分符号是否正确转义,上下标是否正确使用。确保没有使用Markdown格式,只用纯文本和LaTeX。 最后,按照用户要求的结构,先回答公式部分,分点列出,然后生成相关问题。保持语言口语化,避免使用专业术语过多,但也要准确。</think>以下是三角函数的核心公式汇总及说明: ### 一、基本恒等式 1. **平方关系** $\sin^2x + \cos^2x = 1$ [^1] $1 + \tan^2x = \sec^2x$ $1 + \cot^2x = \csc^2x$ 2. **商数关系** $\tan x = \frac{\sin x}{\cos x}$,$\cot x = \frac{\cos x}{\sin x}$ 3. **倒数关系** $\sin x = \frac{1}{\csc x}$,$\cos x = \frac{1}{\sec x}$ ### 二、和差角公式 $$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$ (推导过程基于向量旋转或复数表示) ### 三、倍角与半角公式 1. **倍角公式** $\sin 2A = 2\sin A \cos A$ $\cos 2A = \cos^2A - \sin^2A = 2\cos^2A - 1 = 1 - 2\sin^2A$ 2. **半角公式** $$\sin \frac{A}{2} = \pm \sqrt{\frac{1 - \cos A}{2}}$$ $$\cos \frac{A}{2} = \pm \sqrt{\frac{1 + \cos A}{2}}$$ $$\tan \frac{A}{2} = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A}$$ ### 四、积化和差与和差化积 1. **积化和差** $$\sin A \cos B = \frac{1}{2}[\sin(A+B) + \sin(A-B)]$$ $$\cos A \cos B = \frac{1}{2}[\cos(A+B) + \cos(A-B)]$$ 2. **和差化积** $$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$ $$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$ ### 五、辅助角公式 $$a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \phi)$$ 其中$\phi = \arctan \frac{b}{a}$(象限由$a,b$符号决定)[^1]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值