群体遗传学数学基础

本文深入探讨了群体遗传学的数学基础,包括一对等位基因的孟德尔群体、基因频率计算、哈温伯格定律、遗传多态性和群体中亲属关系的研究。此外,还涉及了系统树重建的方法,如UPGMA、最大简约法和最大似然法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学基础

以下全明白才能看懂之后的:

一对等位基因孟德尔群体及其数量表示

  • 孟德尔群体:群体遗传学研究对象,是能够互交繁殖的个体集合
  • 孟德尔群体的遗传结构:它的基因分布和基因型分布

1.群体遗传结构

(AA,Aa,aa)=(p2,p1,p0)
(A,a)=(p,q)

2.基因频率由基因型频率唯一确定

p=p2+1/2p1
q=p0+1/2p1

3.哈温伯格定律

在随机交配的大孟德尔群体中,其遗传结构为
(AA,Aa,aa)=(p2,2pq,q2)
(A,a)=(p,q)
随机交配下的平衡:
在这里插入图片描述

4.平衡群体的性质

4.1 Shannon信息熵最大

平衡群体:

(AA,aA,Aa,aa)=(p2,pq,pq,q2)

由基因库行程的基因型(正反交分开)信息源:

G =
[AA Aa aA aa
p11 p12 p21 p22]

由pij计算基因A,a的频率p,q :
在这里插入图片描述
在这里插入图片描述
基因型的信息熵:
在这里插入图片描述使s(G)最大的基因型频率可归结为如下条件极值:
在这里插入图片描述

https://www.numberempire.com/latexequationeditor.php
\begin{cases}
\sum\limits_{i=1}^2\sum\limits_{j=1}^2(p_{ij})=1 \\
p=1/2\sum\limits_{j=1}^2(p_{1j}+p_{j1}) \\
q=1/2\sum\limits_{j=1}^2(p_{2j}+p_{j2}) \\
s(G)=-\sum\limits_{i=1}^2\sum\limits_{j=1}^2(p_{ij}lnp_{ij})=max
\end{cases} \

构建拉格朗日函数约束条件求解:

p11=p2
p22=q2
p12=p21=pq

4.2 S(G)=2S(A)

基因库(A,a)=(p,q)的信息熵:

S(A)=-(plnp+qlnq), 0<=S(A)<=ln2

基因型的信息熵:

S(G)=-(p2lnp2+2pqlnpq+q2lnq2) =-2(plnp+qlnq)=2S(A)

遗传多态性

1.描述遗传多态性

  • 对于群体的遗传变异,通常用多态位点的比例来度量
  • 群体中基因型的多型性,通过群体中两性配子随机结合成各种基因型中杂合体的比例来描述,称为杂合度

多态位点:基因分布中绝大多数等位基因的频率在区间(0.01,0.99)之内,比

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值