宏基因组分箱后续

本文介绍了宏基因组分箱后的分析步骤,包括代谢潜能分析、进化树构建和物种注释。代谢潜能分析关注C、N、S代谢通路;进化树构建涉及16S rRNA序列选择和保守基因串联;物种注释借助于NCBI数据批量下载。此外,还讨论了基因草图可视化和进化历程分析方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在获得了binning结果之后,下一步应该进行什么分析呢?本文将针对binning之后的分析思路进行梳理。
参考文献:Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota
文献讲解:Nat Commun:宏基因组学提示曙古菌门的代谢和进化(中大李文均组)

1.分箱流程

请参考?
Microbiome:宏基因组分箱流程MetaWRAP分析实战和结果解读
分箱获得结果:

  • bin
  • 物种注释
  • prokka功能注释

2.代谢潜能分析

代谢潜能分析需要基于prokka的结果进行KEGG等数据库注释,一般针对某一高丰度门进行分析

2.1代谢通路构建

根据基因存在与否进行代谢通路构建,一般关注主要C,N,S,能量代谢通路,还可以根据研究对象所处环境进行针对性分析
关注点:厌氧/需氧,自养/异养,利用的C源等
需要手动整理,非常画时间
在这里插入图片描述

2.2基因簇分析

保守区域比对:CDD库

代谢物合成基因簇:
antiSMASH数据库:微生物次生代谢物合成基因组簇查询和预测
参考:Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis
中文解读:

宏基因组binning是一种用于对宏基因组数据进行分类和鉴定的方法。宏基因组数据是指从环境样品中获取的多个未知微生物基因组片段。这些基因组片段在后续的分析中通常需要被分类和归类,以获得有关微生物群落的更多信息。 宏基因组binning主要依赖于DNA序列的相似性,并通过比对和聚类的方式来组装和分类基因组片段。首先,它会使用组装算法将原始DNA序列拼接成长长度的连续序列,这被称为contig。然后,根据这些contig之间的相似性,将它们归类为不同的bins,每个bin代表一个可能的微生物基因组。常用的聚类方法包括k-means聚类和基于相似性网络的聚类。 在binning过程中,还会使用一些附加的信息来辅助分类,比如基于GC含量、覆盖度、共线性等特征进行筛选和分类。这些特征有助于识别和归类那些相似度较高的基因组,并进一步提高准确性。 宏基因组binning在环境微生物组学研究中扮演着重要的角色。它能够帮助我们了解到环境中存在的微生物多样性,发现新的微生物种类,并进一步研究它们在生态系统功能中的作用。此外,宏基因组binning还可以用于分析寄生菌、病原体等微生物组的基因组,并为其后续处理和研究提供数据支持。 总而言之,宏基因组binning是一种用于对宏基因组数据进行分类和鉴定的方法,通过比对和聚类等步骤对基因组片段进行组装和归类,为环境微生物组学研究提供了重要的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值