前言
本文主要总结了《机器学习实战》第三章———决策树中的若干问题,以及一些函数的用法(对比)。
第一部分 心得
1. 关于决策树的生成
决策树的生成算法有:ID3(本章使用)、CART、C4.5。对于ID3而言,筛选特征的原则为——最大信息增益原则。在介绍最大信息增益之间,我们首先要了解一个概念——熵(Entropy) :在信息论与概率统计中,熵是表示随机变量不确定性的度量。信息量与事件概率有关(信息量的多少是与事件发生即概率的大小成反比
)。设X是一个取有限个值的离散随机变量,X=xi (i=1,2…,n)。则符号xi的信息定义为:
为了计算熵,我们需要计算所有类别所有可能值包含的信息期望值:
<对数以2和e为底时,熵的单位分别叫做比特(bit)和奈特(nat)>
2.关于过拟合问题
如果一个模型非常适合训练数据,但要对非训练集的真实数据进行预测就不能使人满意,这就是过拟合问题(Overfitting)