bzoj1076(概率与期望dp入门)

题目大意:给定k次弹出宝物的机会,每次随机弹出n种宝物的机会,如果吃过这种宝物的所有前提宝物就可以吃这种宝物,求最优策略的期望得分

看到数据范围果断状压DP- - 不看数据范围害死人- -

至于吃还是不吃 这是个问题

对于这种最优策略的期望DP 我们一般都是从后往前推

枚举每次挑战 枚举此时的状态 枚举宝物是哪种

如果当前的宝物可以吃 就在吃与不吃的后继状态中选择最大值加到当前状态上

如果当前的宝物不能吃 只能选择不吃的后继状态加到当前状态上

最后输出f[1][0]就是答案

 

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
using namespace std;
typedef double db;
int n,k;
double f[105][1<<17],sc[17];
int t[17];

int main()
{
	scanf("%d%d",&k,&n);
	int j;
	for (int i=1;i<=n;i++)
	{
		scanf("%lf",&sc[i]);
		while (scanf("%d",&j)&&j!=0) t[i]=t[i]|(1<<(j-1));
	}
	
	int S=1<<n;
	for (int i=k;i>=1;i--)
	{
		for (j=0;j<S;j++) 
		{
			for (int l=1;l<=n;l++) 
			{
				if ((j|t[l])==j) f[i][j]+=max(f[i+1][j],f[i+1][j|(1<<(l-1))]+sc[l])/n;
				else f[i][j]+=f[i+1][j]/n;
			}
		}
	}
	
	printf("%.6lf",f[1][0]);
	return 0;
}


 

 

总结:

对于这种最优策略的期望DP 我们一般都是从后往前推,倒推会好做很多,因为最后的答案就是F[1][0]。顺推不好判断当前状态是否有效。(倒推是有效从有效推来,无效随

便,因为答案就是一个有效状态;而顺推则可能从无效推到有效)

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值