良好的社会信用是建立规范的社会主义市场经济的重要保证,是有效防范行业风险的重要条件,是现代电信企业正常运行的根基。随着经济全球化的发展,目前以电 子数据交换和互联网为依托、以国际信用为支撑的诚信体系正贯穿于整个全球一体化的市场经济中。相比而言,我国电信市场存在大量信用失信问题,这已经成为制 约电信行业成长的一大“瓶颈”。究其原因,除了我国尚未健全社会信用体系之外,电信企业本身对建立信用体系没有充分重视也是重要原因。
在我国现阶段市场经济体制尚不完善、信用制度发育尚不健全的情况下,要想解决好电信企业目前出现的信用 消费中的风险问题,可以在不影响企业正常利润收入的前提下,采用对客户信用进行征信的模式,即按照不同的客户信用状况和交易价值,实行不同的信用政策,从 而支持有价值、有潜力的客户,控制和减少高风险客户,合理使用客户关系管理 让电信企业的销售建立在一个健康、合理的客户结构上,保证电信业的持续和良性发展。
一、电信企业CRM和征信现状
1.客户关系管理成就电信经营之梦
对于电信企业来讲,在网络发展初期,可以更多地依靠投资来取胜,谁的投资快、谁的网络容量大、谁的规模 大,谁就能吸引更多的用户。然而随着市场发展、电信业重组和WTO带来的国际化,电信企业已经很难通过规模来维持竞争优势。电信企业的核心竞争力必然要从 规模投资转向市场营销能力,CRM正是帮助电信企业提高管理水平和营销能力的利器。
电信企业可以通过建立数据仓库,运用数据挖掘、商业智能等技术手段,对大量的客户信息进行分析,更好地 了解客户的消费模式,并对客户进行价值与贡献坐标分类,从而能针对客户的实际需求,制订相应的营销战略,开发出相应的产品或服务,来更好地满足客户需求。 CRM形成的管理系统和信息系统可以保证电信业务的高效运行,提升电信企业的信息化、电子化建设水平和员工的知识技术及工作能力。CRM的建立可以深入改 革电信企业内部的结构组织形式,整合电信企业生存的资源体系,优化电信企业市场价值链,开拓电信企业所特有的核心竞争力,同时对发展健康的企业文化起到十 分重要的作用。CRM技术中的数据仓库与数据挖掘能成功实现对客户关系管理的保障。
2.我国电信企业亟需弥补征信管理上的空白
在过渡到市场经济体制以后,企业已经变成了具有独立法人资格、能独立自主经营的经济主体,此时征信管理 和风险控制能力欠缺的弊病就逐渐显露出来。由于我国电信企业提供的是电话通话等信息类服务,所以大多采取先消费后付款的营销方式。在没有适当监管、控制措 施的情况下,时常发生恶意欠费等影响电信企业正常运作的事情。目前,随着国家对电信资费的一再下调,特别是电话初装费取消后,电信企业的用户越来越多,欠 费情况也越来越严重,比如面对催缴费单赖帐拖欠;客户在住址搬迁后原来电话号码不再使用,也不去结清欠费;客户伪造假身份证办理入网恶意欠费;非法使用他 人身份证复印件办理入网恶意欠费等。
虽然欠费问题日趋严峻,但是我国电信企业在运行中仍然对信用的价值比较忽视。作为信用的授予者,电信企 业往往在无形中无偿地将信用轻易地赠与交易的对方,而没有仔细评估可能承担的信用成本,如利息损失、机会成本、坏账风险(信用风险)等。电信企业在财务预 算中没有对应收账款单独核算,这样就导致电信企业的业务部门滥用信用资源、盲目放账,使电信企业遭受了巨大的信用风险损失。同时,作为被给予信用的客户, 由于能够不付成本地获得信用,即可以预先享有电信服务,因此很可能不择手段地占有、拖延支付对方的应收账款,甚至干脆赖帐不还,造成企业的坏账。
二、电信征信概述
1.建立征信模式的意义和原则
征信为信用活动提供的信用信息服务,实践中表现为依法采集、调查、保存、整理、提供企业和个人的信用信 息,并对其信用状况进行评价,以此满足从事信用活动的机构在信用交易中对信用信息的需要,解决市场信息不对称的问题。CRM的征信模式是指利用电信企业的 CRM系统收集和管理客户信息的模式。由于电信企业大多实施了CRM系统,客户的大部分数据都已存放在客户关系管理数据库中,电信企业利用技术工具挖掘和 分析现有数据就可以得到客户的信用信息,评定信用等级,可以很好地控制电信企业的信用风险。
电信企业建立CRM征信模式,有利于交易决策中防范风险,避免在交易时因为客户信息不全或是信息不真实 所造成的风险及由于客户信息陈旧、过时所带来的失误;可以利用客户关系管理系统全面地搜集客户信息,使信用分析进行得比较全面、细致和准确,从而为电信企 业建立规范、科学的资金使用,为电信企业项目审批制度提供真实准确的信息基础;可以采用规范的客户信息管理制度打破各个部门之间对信息的垄断,避免由于部 门间缺乏有效沟通、交流带来信息重复调查或是其他相关资源的浪费,降低管理成本;还利于保护电信企业宝贵的客户资源,避免少数业务人员独占客户资源,最大 限度地杜绝内部人员与不良客户之间的勾结,减少对企业利益的损害。
为了将得出科学的结论用于管理决策,电信企业需要在征信过程中遵循真实性、完整性、时效性、标准化和制度化这五项基本原则。
(1)真实性原则。对客户信息进行管理时充分利用各种渠道收集有价值的客户信息,对来自不同渠道的客户信息进行核查,对相关人员行为跟踪和监控,以保证信息真实可靠。
(2)完整性原则。为了全面反映客户的各种特征,必须坚持客户信息管理工作的完整性。客户特征的选择和信息内容的分类应该齐全,使客户信息成为有机的整体,系统地反映客户情况,同时信息的收集工作应该全面、细致,对能够反映客户信用状况的所有信息都要关注。
(3)时效性原则。为了防范在激烈的市场竞争中出现客户交易信用风险,必须坚持客户信息管理工作的时效性,让企业能够更好地适应市场竞争和客户情况的不断变化,通过监控客户的动态信息,避免过时信息对企业造成的信用风险。
(4)标准化原则。标准化原则不仅关系到客户信息的质量,还关系到信息的分析利用问题。只有明确规定客户信息的层次和分类标准,才能够对不同客户、不同时间的信息进行数据处理和分析比较,从而得出科学的结论用于管理决策。
(5)制度化原则。客户的信息是海量的,分散存放于企业的各个部门之中,需要有意识地去搜集这些信息,这就要求企业能够把客户信用信息的管理工作制度化,确定岗位责任、工作内容和时间进度安排等。
2.电信企业征信的基本结构
目前电信企业面临的高额欠费问题不仅仅反映出企业内部管理上存在的漏洞,更折射出国内电信市场对客户“ 消费信用”评估的缺失。假如有人从信用体系“瓦解 ”中得到好处而没有受到法律的制裁,会诱导别人也这样做。大家都想从没有信用的做法中获利,社会中很重要的自律原则就会失去作用。所以,讲信用不仅是一个 道德观念,还应当是一种政策和制度上的要求。
客户信用应理解为构成客户偿付电信服务费用能力的要素的总和。首先,客户信用反映了其偿付债务的能力, 是客户的一种客观状况,包括客户的欠费记录,财务状况等。其次,客户信用是其信用分析的基础和条件,企业通过做好客户资信用信息的搜集和评价工作,为开展 客户信用征信工作提供保证。由于电信市场是一个服务性的行业,客户信用的征信过程必然渗透于企业经营管理的许多领域和部门,呈现出交叉性、综合性的特征。
三、电信企业的CRM征信模式
上面已经列出了客户信用征信的基本结构,建立电信企业的CRM征信模式可以分为以下5个步骤。
1.客户信用信息的搜集和核实
客户信用信息是指所有能够代表或者反映该电信客户信用状况和信誉的资料和记录。真实、准确的客户信用信息是客户信用征信工作的基础和前提。如何搜集电信客户的信用信息这一问题涉及到电信企业内部管理和外部环境等诸多方面。
(1)信息的搜集范围。当以客户的信用状况作为专项研究管理目标之时,需要确定电信客户的哪些个人信息对于了解、判断其信用状况最为直接、有效。
(2)信息的搜集渠道。有来自电信企业内部相关部门的人员在与客户接触的过程中了解、积累的大量客户信 用信息及从企业外部(即政府管辖的公共信息、各大银行或中介机构提供的信用调查服务等渠道)获得的信息。由于信息来源的不同,这些信息的真实准确程度反映 的客户信用特点及获取的信息成本各不相同。
(3)信息搜集的管理机制。规范电信企业管理制度,通过企业集中统一管理。搜集的客户信用信息汇入到专门的信用管理部门,部门之间包括销售人员不能垄断客户信息,防止宝贵资源的分散和流失。
(4)信息真实性的核实。不同来源的信息准确度会有很大差异,来自客户提供的信息往往会夸大其实,一线 的销售人员汇报的信息存在过多的个人主观判断成分,而信用调查机构提供的信息则存在时效性问题。这需要专门从事信用分析的人员对信息进行甄别、对比,剔除 虚假信息成分,还客户信用以本来面目。
2.客户信用数据库的建立与维护
客户信用数据库是获取客户信用信息的重要工具。通过它,电信企业将搜集到的海量的客户信用信息加以整理和保存,必要时可以通过CRM数据挖掘技术分析客户基本属性、信用、价值、消费行为及倾向等情况。在实践中,电信企业对客户信用数据库的管理涉及三方面。
(1)客户信用信息的分类标准。电信企业要依据自身的业务特点和客户特点对客户信用信息进行分类,同时要参照专业规范标准进行分类,这样才能将来自企业内部及外部的信息更准确、清晰地加以记录和管理。
(2)客户信用数据库的管理和维护。客户信用数据库应由专职人员进行管理和维护。当电信企业没有专门的 信用管理部门时,其往往附属于市场销售部门。这样就会造成过分关注客户需求信息,而忽视对客户信用信息的记录。专业化的客户信用数据库必须对其使用权限及 相应责任加以重视。
(3)客户信用数据库与CRM的关系。虽然电信企业建立了客户管理的档案,以各种方式搜集和记录客户信 息,但是没有对客户信用信息进行统一的管理,导致客户信息零散。电信企业前期建立了CRM系统,但是没有能够继续投入,不能及时地更新和维护系统,主观认 为客户信用信息工作已经一步到位,忽视信息的时效性,从而导致在决策时所能把握的依据信息完全过时、陈旧,严重影响企业对客户信用状况的判断。电信企业在 建设自身发展需要的CRM时,对客户信息管理尤其是信用信息的管理缺乏标准和专门的客户数据库。在如何提高客户忠诚度及满意度方面,电信企业在CRM上下 足了功夫,对客户这两方面的信息管理相当成熟,然而对于信用信息(尤其是涉及到客户交易过程中的付款问题和客户本身信誉问题的信息),电信企业在管理上存 在相当多的问题。
目前的实际情况是,在较为流行的CRM解决方案中,客户信用的数据编制和管理仍有较大的空白,这正是本文试图构建CRM征信模式的关键点之一。其中,客户信用数据库是整个CRM系统中重要的组成部分,同时又是一个相对独立的子系统。
3.客户信用评估与评级
客户信用征信的核心任务就是对客户的信用风险做出科学的评估和预测。众所周知,决定或影响客户信用状况 的因素是多方面的。通常情况下,电信企业对客户信用状况的判断主要依赖于业务人员或管理决策人员的主观经验性评估。这种评估由于主观因素影响及评估方法不 科学,往往会偏离客户的实际情况。电信企业实行客户信用评估必须使用一系列科学的管理方法和技术手段,对客户信用程度做出较为客观的判断,同时必须重视三 个问题。
(1)与金融市场中银行对其贷款客户的信用评估相比,电信企业对其客户的评估带有更多的主观性,即更加 重视客户的交易价值(或合作潜力)。然而若过分重视这种主观性,往往容易忽视客户真实的、客观的风险,导致决策失败。这方面普遍存在的问题是当客户的信用 状况由销售管理人员或具体销售人员进行判断时,由于其自身销售利益或销售目标的驱使,过于乐观、盲目地看待客户的信用状况。解决此问题的有效方法是保证客 户信用评估职能的相对独立性,使其不受任何方面利益的影响,同时从企业的信用管理机构和制度进行科学合理的设计。
(2)准确的评估依赖于科学的方法,电信企业需要拥有专职信用分析人才及一套专业的评估体系,才能对客户的信用风险做出全面、量化的判断。
(3)电信企业开展客户信用评估的目的是为了更好地指导交易决策,所以对客户信用程度的表达要简明、准确,以信用等级形式划分。
4.信用决策与风险控制
电信企业建立CRM征信模式,要在对客户的信用状况、程度进行分析的基础上,按照客户不同的信用评级,制定出准确、有针对性的信用政策。只有这样才能使电信企业的信用销售达到预期的目标:一方面有效地刺激销售增长,另一方面使信用风险控制在一定范围内。
信用限额是电信企业在信用交易中允许授予客户信用的最高额度。它是建立企业与客户之间的信用关系、控制 客户信用风险的一个最为重要的决策指标。当企业缺乏信用管理时,通常给予客户的信用额度是依据销售管理权限的大小决定的。这种信用管理方式最终导致客户信 用风险失控,企业的应收账款居高不下。
客户信用额度的评判必须首先考虑客户信用状况和信用程度,由专职人员通过分析来完成。客户信用限额一旦确定,往往具有指令作用,是对销售的一种制约和控制。电信企业对客户的信用限额的设定既要符合当前的销售目标,又要符合控制客户信用风险的要求。
5.客户信用风险监督
客户的信用风险存在于交易活动的许多环节(客户开发、合同评审、开通服务及账款回收)。这些客户信用风 险发生的关键环节需要企业信用管理人员进行监控。同时客户的信用状况也随着市场和业务的变化而不断变化,所以电信企业必须及时了解和控制。因此,对于客户 信用风险应该进行常规、流程化的监控,对客户的重大事项变化、客户缴费进程、客户欠款追收等情况必须及时监督。
在具体实践中,可能遇到的问题在于对客户信用信息的搜集上。由于,我国正处于社会主义市场经济的初始阶 段,法制不健全,没有统一的信用体系,使商业化的社会征信机构开展企业和个人信用信息的搜集、保存、服务等业务时没有基本的法律保障。建议相关职能部门尽 快通过立法来规范电信企业的信用行为,使电信企业的信用行为上升为企业的法定义务。为了保证法律的执行,还应综合运用行政、法律和商业化的手段,依靠先进 的信息技术,逐步收集、处理分散在工商、税务、银行、电信等行业的企业和个人信息及其信用消费行为记录,建立覆盖全国的征信体系和网络化的征信数据库。
保险行业作为一个以客户为中心的行业,CRM注定应该成为其信息化建设的重头戏。随着各保险公司规模的 不断扩大,如何管理现有客户,不断挖掘和扩展新的客户资源,提高效益,增强公司竞争力就成为各公司最急需解决的问题,特别是数据大集中完成之后,很多保险 公司希望能及时提供客户分析和市场分析的信息,帮助决策,做到销售与服务的结合;同时找到重要客户并针对不同客户提供差异化服务,能够将服务再提升一步。 根据 CRCC2003年的一份调查报告显示,国内70%的保险公司都已经实施或正在实施CRM。但是,从各家保险公司的CRM系统应用实际来看,并没有充分发 挥CRM应有的作用,缺乏深入的客户信息分析及与后台可集成的销售业务操作功能。造成这一现状的原因很多,比如过多依赖人海战术,业务员上传数据的真实性 不能保证等。
除此之外,数据挖掘技术、保险电子交易等技术和系统也将逐渐被更多的保险公司接受,成为他们特定阶段信息化建设的重点。