简单介绍:过采样中的SMOTE算法

前言
  • 仅概况介绍
正文
  • 算法思想:对于每个少数类样本A,从它的最近邻中随机选一个样本B,在A、B之间的连线上随机选一点C作为一个新的样本。
  • 具体过程
    • 1、对于少数类中每一个样本A,以欧氏距离为标准计算它到少数类样本集中所有样本的距离,将这些样本记作为“邻居”。
    • 2、根据数据集中的不平衡比例设置一个采样比例,来确定采样倍率N,对于每一个少数类样本A,在其“邻居”中随机选择若干个邻居,假设选择的近邻为B。
    • 3、对于邻居B而言,按照:C = A + rand(0,1)∗|A−B|,来得出新的样本
      公式详解:A−B:为二者间的距离,rand(0,1):为随机在0~1之间取值。
    • 4、对于其它选择中的类似B的样本执行相同操作,完成取样。
  • 参考图片
  • SMOTE算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值