SMOTE过采样算法

一、概念

        SMOTE(Synthetic Minority Over-sampling Technique)是一种用于处理不平衡数据集的过采样方法。SMOTE基于插值法。通过在少数类样本之间生成新的合成样本来增加少数类的数量,从而平衡数据集中的类别分布。因此,与简单的复制少数类样本不同,SMOTE通过生成新的样本来避免过拟合问题。

二、原理

        SMOTE的基本思想是通过在少数类样本之间进行插值来生成新的样本,算法逻辑相对简单。具体步骤如下:

  1. 选择少数类样本:从少数类样本中随机选择一个样本
  2. 选择邻居样本:在少数类样本中找到的 k 个最近邻样本,并从中随机选择一个邻居样本
  3. 生成新样本:通过在​之间进行线性插值生成一个新的样本。插值公式为
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值