CamShift算法

实现1--Back Projection

CamShift算法,即"Continuously Apative Mean-Shift"算法,是一种运动跟踪算法。它主要通过视频图像中运动物体的颜色信息来达到跟踪的目的。我把这个算法分解成三个部分,便于理解:
1) Back Projection计算
2) Mean Shift算法
3) CamShift算法

Back Projection
计算Back Projection的步骤是这样的:
1. 计算被跟踪目标的色彩直方图。在各种色彩空间中,只有HSI空间(或与HSI类似的色彩空间)中的H分量可以表示颜色信息。所以在具体的计算过程中,首先将其他的色彩空间的值转化到HSI空间,然后会其中的H分量做1D直方图计算。
2. 根据获得的色彩直方图将原始图像转化成色彩概率分布图像,这个过程就被称作"Back Projection"。
在OpenCV中的直方图函数中,包含Back Projection的函数,函数原型是:
   void cvCalcBackProject(IplImage** img, CvArr** backproject, const CvHistogram* hist);
传递给这个函数的参数有三个:
1. IplImage** img:存放原始图像,输入。
2. CvArr** backproject:存放Back Projection结果,输出。
3. CvHistogram* hist:存放直方图,输入

下面就给出计算Back Projection的OpenCV代码。
1.准备一张只包含被跟踪目标的图片,将色彩空间转化到HSI空间,获得其中的H分量:
  IplImage* target=cvLoadImage("target.bmp",-1);  //装载图片
  IplImage* target_hsv=cvCreateImage( cvGetSize(target), IPL_DEPTH_8U, 3 );
  IplImage* target_hue=cvCreateImage( cvGetSize(target), IPL_DEPTH_8U, 3 );
  cvCvtColor(target,target_hsv,CV_BGR2HSV);       //转化到HSV空间
  cvSplit( target_hsv, target_hue, NULL, NULL, NULL );    //获得H分量
2.计算H分量的直方图,即1D直方图:
  IplImage* h_plane=cvCreateImage( cvGetSize(target_hsv),IPL_DEPTH_8U,1 );
  int hist_size[]={255};          //将H分量的值量化到[0,255]
  float* ranges[]={ {0,360} };    //H分量的取值范围是[0,360)
  CvHistogram* hist=cvCreateHist(1, hist_size, ranges, 1);
  cvCalcHist(&target_hue, hist, 0, NULL);
在这里需要考虑H分量的取值范围的问题,H分量的取值范围是[0,360),这个取值范围的值不能用一个byte来表示,为了能用一个byte表示,需要将H值做适当的量化处理,在这里我们将H分量的范围量化到[0,255].
4.计算Back Projection:
  IplImage* rawImage;
  //----------------------------------------------
  //get from video frame,unsigned byte,one channel
  //----------------------------------------------
  IplImage* result=cvCreateImage(cvGetSize(rawImage),IPL_DEPTH_8U,1);
  cvCalcBackProject(&rawImage,result,hist);
5.结果:result即为我们需要的.

算法分析
用在cvCalcBackProject处理中的模板是目标图像色调(HUE)的直方图,而直方图可以看作是一种概率分布图。在处理前,目标图像中的每一个象素的值描述的在这一点的颜色信息,而处理后,图像中每一个象素的值就变成了这个颜色信息出现在此处的可能性的一种离散化的度量,出现的可能性大,象素的值就大,反之则小。这样就为后面的匹配和跟踪提供了线索。
 
在讨论Mean Shift算法之前,首先讨论在2D概率分布图像中,如何计算某个区域的重心(Mass Center)的问题,重心可以通过以下公式来计算:
1.计算区域内0阶矩
for(int i=0;i<height;i++)
  for(int j=0;j<width;j++)
     M00+=I(i,j)
2.区域内1阶矩:
for(int i=0;i<height;i++)
  for(int j=0;j<width;j++)
  {
    M10+=i*I(i,j);
    M01+=j*I(i,j);
  }
3.则Mass Center为:
Xc=M10/M00; Yc=M01/M00
接下来,讨论Mean Shift算法的具体步骤,Mean Shift算法可以分为以下4步:
1.选择窗的大小和初始位置.
2.计算此时窗口内的Mass Center.
3.调整窗口的中心到Mass Center.
4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值。

在OpenCV中,提供Mean Shift算法的函数,函数的原型是:
int cvMeanShift( const CvArr* prob_image, CvRect window,
                 CvTermCriteria criteria, CvConnectedComp* comp );
需要的参数为:
1.const CvArr* prob_image:目标直方图的反向投影,传入
2.CvRect window:初始的窗口,传入;
3.CvTermCriteria criteria:停止迭代的标准,传入;
4.CvConnectedComp* comp :查询结果,传出。
 

1.原理
在了解了MeanShift算法以后,我们将MeanShift算法扩展到连续图像序列(一般都是指视频图像序列),这样就形成了CamShift算法。它的基本思想是视频图像的所有帧作MeanShift运算,并将上一帧的结果(即Search Window的中心和大小)作为下一帧MeanShift算法的Search Window的初始值,如此迭代下去,就可以实现对目标的跟踪。整个算法的具体步骤分5步:
Step 1:将整个图像设为搜寻区域。
Step 2:初始话Search Window的大小和位置。
Step 3:计算Search Window内的彩色概率分布,此区域的大小比Search Window要稍微大一点。
Step 4:运行MeanShift。获得Search Window新的位置和大小。
Step 5:在下一帧视频图像中,用Step 4获得的值初始化Search Window的位置和大小。跳转到Step 3继续运行。

2.实现
在OpenCV中,有实现CamShift算法的函数,此函数的原型是:

CamShift

发现目标中心,尺寸和方向

int cvCamShift( const CvArr* prob_image, CvRect window, CvTermCriteria criteria,
                CvConnectedComp* comp, CvBox2D* box=NULL );
prob_image
目标直方图的反向投影 (见 cvCalcBackProject).
window
初始搜索窗口
criteria
确定窗口搜索停止的准则
comp
生成的结构,包含收敛的搜索窗口坐标 (comp->rect 字段) 与窗口内部所有象素点的和 (comp->area 字段).
box
目标的带边界盒子。如果非 NULL, 则包含目标的尺寸和方向。

函数 cvCamShift 实现了 CAMSHIFT 目标跟踪算法([Bradski98]). 首先它调用函数 cvMeanShift 寻找目标中心,然后计算目标尺寸和方向。最后返回函数 cvMeanShift 中的迭代次数。

CvCamShiftTracker 类在 cv.hpp 中被声明,函数实现了彩色目标的跟踪。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值