贝叶斯理论

文章介绍了贝叶斯定理的基本概念,包括先验概率和后验概率,以及它们在概率和似然之间的区别。通过实例解释了如何利用贝叶斯定理更新知识,特别是在分类问题中的应用。朴素贝叶斯算法被提及,强调其在处理独立特征的分类任务中的使用,同时指出了该方法的优缺点。
摘要由CSDN通过智能技术生成

参考:(6条消息) 贝叶斯、先验概率后验概率_贝叶斯先验概率和后验概率_王蒟蒻的博客-CSDN博客

区分概率和似然:

概率直接描述随机事件,可以从数据频率估计:事先已经知道了所有样本的分布情况,在此基础上进行概率的计算

M个,白球N个,随手抓起一个球,求是黑球的概率

似然是给定参数下数据的概率,通过优化似然可以估计参数:不知道所有样本的信息,只能基于给定的信息

一个袋子中装着若干小球,里面有黑色跟白色,我们随机取出一些小球,然后根据小球的情况去计算袋中小球实际的分布情况

两者在机器学习中扮演不同的角色,概率表示数据分布,似然用于学习模型参数

运用场景:用于特征相互独立的分类问题

优缺点:

        优点:

                1. 算法逻辑简单,易于实现
                2. 分类过程中时空开销小
        缺点:  

                1. 特征间的相互独立难以保证,导致分类效果不好
                2. 只适用于特征较少的情况

                  

n维特征 _{_{_{}}}_{x_1,x_2,...x_n} 相互独立的,y有k个类别

1 根据条件概率公式

P(A|B) = \frac{P(B|A) * P(A)}{P(B)}

P({y_k}|x) = \frac{​{P(x|{y_k}) \times P({y_k})}}{​{\sum\limits_k {P(x|{y_k}) \times P({y_k})} }}

在这里插入图片描述

2 解释性

由先验概率Prior probability 和可能性 Likelihood 推出 后验概率 Posterior probability,本质上是:

例:在全局事件中,遇到十字路口的概率仅仅为5%,但当看见前面的车打右转灯后,遇到十字路口的概率应该更新为95%。

通俗来讲,我想知道A事件的发生,如果没有任何的先验知识,我只能做出它发生与不发生的概率各占50%的判断。但是,幸运的是我知道B事件发生了,根据两者的关联经验,我知道它对A事件的发生起到促进作用,所以我可以更加准确的判断A事件是大概率发生的(如80%),而不是起初的非零即一的50%。如果我有更多A的关联事件,那么我可以做出更加准确的判断,这就是贝叶斯推断

先验概率P(y_k): 样本为k类别的概率,根据以往经验和分析得到的概率

后验概率P(y_k|x) = P(y_k|x_1,x_2...x_n): 当事件发生时,样本为k类别的概率

\mathop {\arg \max }\limits_{​{y_k}} P({y_k}|x)后验概率最大的类别

3  推导公式【多变量】

P(y_k|x_1,x_2...x_n) = \frac{P(x_1,x_2...x_n|y_k) * P(y_k)}{P(x_1,x_2,...x_n)}

变量间相互独立时:

 P(x_1,x_2...x_n|y_k) = P(x_1|y_k) * P(x_2|y_k) * ...P(x_n|y_k) = \prod_{i=1}^{n}P(x_i|y_k)

全概率公式

P(x_1,x_2...x_n) =\sum^{k}_{1} P(x_1,x_2...x_n|y_k) * P(y_k)

 替换

P({y_k}|x) = \frac{​{P({y_k}) \times \prod\limits_{i = 1}^n {P({x_i}|{y_k})} }}{​{\sum\limits_k {P({y_k}) \times \prod\limits_{i = 1}^n {P({x_i}|{y_k})} } }}

  f(x) = \mathop {\arg \max }\limits_{​{y_k}} P({y_k}|x) = \mathop {\arg \max }\limits_{​{y_k}} \frac{​{P({y_k}) \times \prod\limits_{i = 1}^n {P({x_i}|{y_k})} }}{​{\sum\limits_k {P({y_k}) \times \prod\limits_{i = 1}^n {P({x_i}|{y_k})} } }}

f(x) = \mathop {\arg \max }\limits_{​{y_k}} P({y_k}) \times \prod\limits_{i = 1}^n {P({x_i}|{y_k})}

朴素贝叶斯根据训练数据进行一次计算,没有反向传播迭代调整

在训练过程中虽然是一次计算,但贝叶斯公式表示的意思是:捕捉新信息,对先验概率进行更新得到后验概率,来模拟机器学习的更新过程

学习到了先验概率和likelihood,可处理非训练数据,得到预测类别

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值