目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:力扣
描述:
给定一个数组 books
,其中 books[i] = [thicknessi, heighti]
表示第 i
本书的厚度和高度。你也会得到一个整数 shelfWidth
。
按顺序 将这些书摆放到总宽度为 shelfWidth
的书架上。
先选几本书放在书架上(它们的厚度之和小于等于书架的宽度 shelfWidth
),然后再建一层书架。重复这个过程,直到把所有的书都放在书架上。
需要注意的是,在上述过程的每个步骤中,摆放书的顺序与你整理好的顺序相同。
- 例如,如果这里有 5 本书,那么可能的一种摆放情况是:第一和第二本书放在第一层书架上,第三本书放在第二层书架上,第四和第五本书放在最后一层书架上。
每一层所摆放的书的最大高度就是这一层书架的层高,书架整体的高度为各层高之和。
以这种方式布置书架,返回书架整体可能的最小高度。
示例 1:
输入:books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelfWidth = 4 输出:6 解释: 3 层书架的高度和为 1 + 3 + 2 = 6 。 第 2 本书不必放在第一层书架上。
示例 2:
输入: books = [[1,3],[2,4],[3,2]], shelfWidth = 6 输出: 4
提示:
1 <= books.length <= 1000
1 <= thicknessi <= shelfWidth <= 1000
1 <= heighti <= 1000
解题思路:
* 解题思路: * 动态规划的思路。 * 这道题的核心就是,每次求第n本书的最小高度时,是从后往前算。 * 比如当前位置第i位,则分别在最后一排尝试放入第i-1,i-2,i-3等等。 * 则此时的最小高度分别为:heightSum
public class Solution1105 {
public int minHeightShelves(int[][] books, int shelfWidth) {
int[] dp = new int[1000 * 1000];
int n = books.length;
for (int i = 0; i < n; i++) {
int widthSum = 0;
int heightSum = Integer.MAX_VALUE;
int maxHeight = 0;
for (int j = i; j >= 0; j--) {
int[] book = books[j];
int width = book[0];
maxHeight = Math.max(book[1], maxHeight);
int height = maxHeight + (j > 0 ? dp[j - 1] : 0);
widthSum += width;
if (widthSum > shelfWidth) {
break;
}
heightSum = Math.min(heightSum, height);
}
dp[i] = heightSum;
}
return dp[n - 1];
}
}
= dp[i-1] + books[i][1]; * heightSum = dp[i-2] + Math.max(books[i][1],books[i-1][1]); * heightSum = dp[i-3] + Math.max(books[i][1],books[i-1][1],books[i-2][1]); * 一直这样尝试下去,直到宽度不足。这样,最小的heightSum就是dp[i]。 * 最终返回dp[i-1]即可。