​力扣解法汇总1015. 可被 K 整除的最小整数

该文章讨论了一道编程题,目标是找到最小的仅包含1的正整数n,它能被给定的正整数k整除。通过不断将当前数值乘以10加1并求余,直到找到循环或确定不存在这样的n。当找到重复的余数时,表示无法整除,返回-1;否则返回n的长度。提供的解题思路和代码示例展示了如何实现这一算法。
摘要由CSDN通过智能技术生成

目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:力扣


描述:

给定正整数 k ,你需要找出可以被 k 整除的、仅包含数字 1 的最  正整数 n 的长度。

返回 n 的长度。如果不存在这样的 n ,就返回-1。

注意: n 不符合 64 位带符号整数。

示例 1:

输入:k = 1
输出:1
解释:最小的答案是 n = 1,其长度为 1。

示例 2:

输入:k = 2
输出:-1
解释:不存在可被 2 整除的正整数 n 。

示例 3:

输入:k = 3
输出:3
解释:最小的答案是 n = 111,其长度为 3。

提示:

  • 1 <= k <= 105

解题思路:

* 解题思路:
* resid代表余数。比如k为7,当前计算值为11时,分为7和4,变成111的时候,我们可以分成70和41,70肯定是可以被整除的,所以我们只要求41和7的余数。继续前面的运算。
* 所以,永远都使用余数*10+1进行新一轮运算求余,直到出现重复。

代码:

public class Solution1015 {

    public int smallestRepunitDivByK(int k) {
        int resid = 1 % k, len = 1; // resid为余数,len为数字长度,初始值为1
        Set<Integer> set = new HashSet<>();
        set.add(resid);
        while (resid != 0) {
            resid = (resid * 10 + 1) % k;
            len++;
            if (set.contains(resid)) {
                return -1;
            }
            set.add(resid);
        }
        return len; // 返回数字长度
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值