目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:力扣
描述:
给定正整数 k
,你需要找出可以被 k
整除的、仅包含数字 1
的最 小 正整数 n
的长度。
返回 n
的长度。如果不存在这样的 n
,就返回-1。
注意: n
不符合 64 位带符号整数。
示例 1:
输入:k = 1 输出:1 解释:最小的答案是 n = 1,其长度为 1。
示例 2:
输入:k = 2 输出:-1 解释:不存在可被 2 整除的正整数 n 。
示例 3:
输入:k = 3 输出:3 解释:最小的答案是 n = 111,其长度为 3。
提示:
1 <= k <= 105
解题思路:
* 解题思路: * resid代表余数。比如k为7,当前计算值为11时,分为7和4,变成111的时候,我们可以分成70和41,70肯定是可以被整除的,所以我们只要求41和7的余数。继续前面的运算。 * 所以,永远都使用余数*10+1进行新一轮运算求余,直到出现重复。
代码:
public class Solution1015 {
public int smallestRepunitDivByK(int k) {
int resid = 1 % k, len = 1; // resid为余数,len为数字长度,初始值为1
Set<Integer> set = new HashSet<>();
set.add(resid);
while (resid != 0) {
resid = (resid * 10 + 1) % k;
len++;
if (set.contains(resid)) {
return -1;
}
set.add(resid);
}
return len; // 返回数字长度
}