opencv 基于haar特征的级联分类器实现图象识别原理

暑假的时候做了一个智能机械臂,用到了opencv里的级联分类器,这里写一下我的理解

级联分类器上手简单,同时Haar特征支持一些特殊图形的检测,例如人脸,我训练的是一个纯色模型,效果并不好,不建议用该种方法识别一些颜色梯度变化不明显的物体

(1)haar特征   

图片展示了最基本的几类haar特征,每种其实都有相应的变式,图中黑:白等于1:1,

 这种也是一种haar特征。

每个haar特征都对应一个特征值,相当于对图像以某点展开一个矩形对图像进行卷积操作(haar特征中的黑只是表达与白相反体现的是一种色差变化)

对于一个haar特征 j 求其特征值的操作为 

f(j)= 白色像素和 *白色像素权重 - 黑色像素和 * 黑色像素权重

因为一个haar 特征里黑色像素与白色像素数量不一定相等所以要成一个权重

,再次说明一下黑色像素在原图中不一定为黑,而在这个点上的特征值让他表现为黑色一方而已

求特征值的操作类似与一个卷积操作。

特征值产生的数据非常巨大,opencv里介绍了一种一种归一化操作

 这里是我引用资料上的不多叙述,是为了让数据小一些

(2)积分图

 如图对于一个图片其haar特征数量是巨大的,仅左上角一个点都可以产生大量haar特征计算矩阵(可放缩)

满足(s, t)条件的矩形称为条件矩形:

(1) x 方向边长必须能被自然数 s 整除(能均等分成 s 段&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值