import pandas as pd
white =
pd.read_csv(
“http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv“, sep=’;’
) # 导入数据
print white.info()#查看白酒信息
print red.head()#查看具体值
print red.describe() #查看各行统计信息
import numpy as np
print np.any(red.isnull()==True) #查看是否有数据缺失
画热力图
import seaborn as sns
%matplotlib inline # 这是jupyter notebook写的
可换成
import matplotlib.pylot as plt
corr = wines.corr() # 计算协方差
sns.heatmap(corr,
xticklabels = corr.columns.values,
yticklabels = corr.columns.values) # 画热力图
sns.plt.show() # plt.show()
print model.output_shape # 查看输出维度
print model.summary() # 查看整个模型