win10+cuda10.1+python3.6 pytorch安装
cuda下载安装:
https://developer.nvidia.com/cuda-downloads
坑
第一次安装时NIVDA所有插件全部安装失败,可以通过自定义的方式取消Visual Studio Intergration,然后进行安装,安装成功
由于当时未记录,所以此处从网上找了几个类似的图说明:
摘自:https://blog.csdn.net/zzpong/article/details/80282814
验证CUDA是否已安装
打开cmd/powershell ,输入:nvcc -V
下载CUDNN
https://developer.nvidia.com/cudnn
下载过程有点曲折,各种登录、问卷
下载之后,
Step1: 解压:会生成cuda/include、cuda/lib、cuda/bin三个目录;
Step2: 分别将cuda/include、cuda/lib、cuda/bin三个目录中的内容拷贝到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5对应的include、lib、bin目录下即可。
Step3: 将bin所在的目录添加到环境变量 PATH 中,“此电脑”→“高级系统设置”→“环境变量”→“系统变量”→“path”→“编辑”→“新建”加入该路径即可。
下载pytorch:
pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1-cp36-cp36m-win_amd64.whl
安装torchvision
pip3 install torchvision
测试GPU-pytorch
cmd/powershell/jupyter 进入python
import torch
torch.__version__
torch.cuda.is_available() #True表示正常
相应tensorflow安装参考:https://blog.csdn.net/qq_38163755/article/details/84382178
Anaconda创建tensorflow环境
打开Anaconda Prompt,进入Anaconda命令行管理界面。配置清华仓库镜,输入指令:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
创建运行环境,输入指令:
conda create -n tensorflow-gpu python=3.6
新建一个名字叫“tensorflow-gpu”,python版本为3.6的运行环境,此环境与Anaconda中其它环境隔离。随后,输入“y“和回车后开始安装。
其中tensorflow-gpu为环境名,可以自定义。python版本3.6。安装tensorflow cpu版本比较简单,所以主要以tensorflow-gpu示例
然后输入
conda activate tensorflow-gpu
#conda deactivate tensorflow-gpu
进入环境,然后下载tensorflow,只能选一个下载
cpu版本
conda install tensorflow
gpu版本
conda install tensorflow-gpu
验证测试安装是否成功
python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))