The Largest Generation (25)

题目描述

A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation.  Your task is to find the generation with the largest population.

输入描述:

Each input file contains one test case.  Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children.  Then M lines follow, each contains the information of a family member in the following format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID's of his/her children. For the sake of simplicity, let us fix the root ID to be 01.  All the numbers in a line are separated by a space.


输出描述:

For each test case, print in one line the largest population number and the level of the corresponding generation.  It is assumed that such a generation is unique, and the root level is defined to be 1.

输入例子:

23 13
21 1 23
01 4 03 02 04 05
03 3 06 07 08
06 2 12 13
13 1 21
08 2 15 16
02 2 09 10
11 2 19 20
17 1 22
05 1 11
07 1 14
09 1 17
10 1 18

输出例子:

9 4

我的代码(C++):

#include<iostream>
using namespace std;
int a[101][101],i,x,y,z,n,m,cnt[101],maxx=0,t;
int dfs(int s)
{
    int i,vis[101]={0},k=1;
    vis[s]=1;
    while(s!=1)
    {
        for(i=1;i<=n;i++)
        {
            if(a[s][i]==1 && vis[i]==0)
            {
                vis[i]=1;
                s=i;
                k++;
                break;
            }
        }
    }
    return k;
}
int main()
{
    cin>>n>>m;
	if(n==1)
	{
		cout<<1<<" "<<1<<endl;
		return 0;
	}
    while(m--)
    {
        cin>>x>>y;
        while(y--)
        {
            cin>>z;
            a[z][x]=1;
        }
    }
    for(i=2;i<=n;i++)
    {
        cnt[dfs(i)]++;
        if(cnt[dfs(i)]>maxx)
        {
            maxx=cnt[dfs(i)];
            t=dfs(i);
        }
    }
    cout<<maxx<<" "<<t<<endl;
    return 0;
}

我的代码(Java):

import java.util.Scanner;
public class Main {
    public static int dfs(int s,int n,int a[][])
    {
        int i,vis[]=new int[101],k=1;
        vis[s]=1;
        while(s!=1)
        {
            for(i=1;i<=n;i++)
            {
                if(a[s][i]==1 && vis[i]==0)
                {
                    vis[i]=1;
                    s=i;
                    k++;
                    break;
                }
            }
        }
        return k;
    }
    public static void main(String[] args) {
        Scanner In=new Scanner(System.in);
        int a[][]=new int[101][101];
        int cnt[]=new int[101],max=0,t=0;
        int n=In.nextInt(),m=In.nextInt();
		if(n==1) System.out.printf("%d %d\n",1,1);
		else
		{
			for(int i=0;i<m;i++)
			{
				int x=In.nextInt(),y=In.nextInt();
				for(int j=0;j<y;j++)
				{
					int z=In.nextInt();
					a[z][x]=1; 
				}
			}
			for(int i=2;i<=n;i++)
			{
				cnt[dfs(i,n,a)]++;
				if(cnt[dfs(i,n,a)]>max)
				{
					max=cnt[dfs(i,n,a)];
					t=dfs(i,n,a);
				}
			}
			System.out.printf("%d %d\n", max,t);
		}
    }
}

我的代码(C语言):

#include<stdio.h>
int a[101][101],i,x,y,z,n,m,cnt[101],maxx=0,t;
int dfs(int s)
{
    int i,vis[101]={0},k=1;
    vis[s]=1;
    while(s!=1)
    {
        for(i=1;i<=n;i++)
        {
            if(a[s][i]==1 && vis[i]==0)
            {
                vis[i]=1;
                s=i;
                k++;
                break;
            }
        }
    }
    return k;
}
int main()
{
    scanf("%d%d",&n,&m);
	if(n==1)
	{
		printf("%d %d\n",1,1);
		return 0;
	}
    while(m--)
    {
        scanf("%d%d",&x,&y);
        while(y--)
        {
            scanf("%d",&z);
            a[z][x]=1;
        }
    }
    for(i=2;i<=n;i++)
    {
        cnt[dfs(i)]++;
        if(cnt[dfs(i)]>maxx)
        {
            maxx=cnt[dfs(i)];
            t=dfs(i);
        }
    }
    printf("%d %d\n",maxx,t);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值