一、深度学习 L1 L2正则化

目录

 

正则化(Regularization)

稀疏模型与特征选择

L1和L2正则化的直观理解

L2正则化和过拟合

正则化参数的选择

L1正则化参数

L2正则化参数


正则化(Regularization)

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 ℓ1

ℓ1​-normℓ2

ℓ2​-norm,中文称作 L1正则化L2正则化,或者 L1范数L2范数

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项α∣∣w∣∣1

α∣∣w∣∣1​即为L1正则化项。

lasso regression

下图是Python中Ridge回归的损失函数,式中加号后面一项α∣∣w∣∣22

α∣∣w∣∣22​即为L2正则化项。

ridge regression

一般回归分析中回归w

w表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量w

w中各个元素的绝对值之和,通常表示为∣∣w∣∣1

  • ∣∣w∣∣1​
  • L2正则化是指权值向量w
  • w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为∣∣w∣∣2
    • ∣∣w∣∣2​

    一般都会在正则化项之前添加一个系数,Python中用α

    α表示,一些文章也用λ

    λ表示。这个系数需要用户指定。

    那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

    • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
    • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

    稀疏模型与特征选择

    上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

    稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

    L1和L2正则化的直观理解

    这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

    ##L1正则化和特征选择
    假设有如下带L1正则化的损失函数:
    J=J0+α∑w∣w∣(1)

    J=J0​+αw∑​∣w∣(1)
    其中J0J0​是原始的损失函数,加号后面的一项是L1正则化项,αα是正则化系数。注意到L1正则化是权值的绝对值之和,JJ是带有绝对值符号的函数,因此JJ是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0J0​后添加L1正则化项时,相当于对J0J0​做了一个约束。令L=α∑w∣w∣L=α∑w​∣w∣,则J=J0+LJ=J0​+L,此时我们的任务变成在LL约束下求出J0J0​取最小值的解。考虑二维的情况,即只有两个权值w1w1和w2w2,此时L=∣w1∣+∣w2∣L=∣w1∣+∣w2∣对于梯度下降法,求解J0J0​的过程可以画出等值线,同时L1正则化的函数LL也可以在w1w2

    w1w2的二维平面上画出来。如下图:

    @图1 L1正则化
    图1 L1正则化

    图中等值线是J0

    J0​的等值线,黑色方形是LL函数的图形。在图中,当J0J0​等值线与LL图形首次相交的地方就是最优解。上图中J0J0​与LL在LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是(w1,w2)=(0,w)(w1,w2)=(0,w)。可以直观想象,因为LL函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0J0​与这些角接触的机率会远大于与L

    L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

    而正则化前面的系数α

    α,可以控制LL图形的大小。αα越小,LL的图形越大(上图中的黑色方框);αα越大,LL的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值(w1,w2)=(0,w)(w1,w2)=(0,w)中的w

    w可以取到很小的值。

    类似,假设有如下带L2正则化的损失函数:
    J=J0+α∑ww2(2)

    J=J0​+αw∑​w2(2)
    同样可以画出他们在二维平面上的图形,如下:

    @图2 L2正则化
    图2 L2正则化

    二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0

    J0​与LL相交时使得w1w1或w2

    w2等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

    L2正则化和过拟合

    拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

    那为什么L2正则化可以获得值很小的参数?

    以线性回归中的梯度下降法为例。假设要求的参数为θ

    θ,hθ(x)hθ​(x)是我们的假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是(hθ(x)−y)2(hθ​(x)−y)2,如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有mm个样本,线性回归的代价函数如下,为了后续处理方便,乘以一个常数12m

    2m1​:

    J(θ)=12m∑mi=1(hθ(x(i))−y(i))2(3)

    J(θ)=2m1​i=1∑m​(hθ​(x(i))−y(i))2(3)

    在梯度下降算法中,需要先对参数求导,得到梯度。梯度本身是上升最快的方向,为了让损失尽可能小,沿梯度的负方向更新参数即可。

    对于单个样本,先对某个参数θj

    θj​求导:

    ∂∂θjJ(θ)=1m(hθ(x)−y)∂∂θjhθ(x)(3.1)

    ∂θj​∂​J(θ)=m1​(hθ​(x)−y)∂θj​∂​hθ​(x)(3.1)

    注意到hθ(x)

    hθ​(x)的表达式是hθ(x)=θ0x0+θ1x1+⋯+θnxnhθ​(x)=θ0​x0​+θ1​x1​+⋯+θn​xn​. 单个样本对某个参数θjθj​求导,∂∂θjhθ(x)=xj

    ∂θj​∂​hθ​(x)=xj​. 最终(3.1)式结果如下:

    ∂∂θjJ(θ)=1m(hθ(x)−y)xj(3.2)

    ∂θj​∂​J(θ)=m1​(hθ​(x)−y)xj​(3.2)

    在考虑所有样本的情况,将每个样本对θj

    θj​的导数求和即可,得到下式:

    ∂∂θjJ(θ)=1m∑mi=1(hθ(x(i))−y(i))x(i)j(3.3)

    ∂θj​∂​J(θ)=m1​i=1∑m​(hθ​(x(i))−y(i))xj(i)​(3.3)

    梯度下降算法中,为了尽快收敛,会沿梯度的负方向更新参数,因此在(3.3)式前添加一个负号,并乘以一个系数α

    α(即学习率),得到最终用于迭代计算参数θj

    θj​的形式:

    θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)j(4)

    θj​:=θj​−αm1​i=1∑m​(hθ​(x(i))−y(i))xj(i)​(4)

    其中α

    α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
    θj:=θj(1−αλm)−α1m∑mi=1(hθ(x(i))−y(i))x(i)j(5)

    θj​:=θj​(1−αmλ​)−αm1​i=1∑m​(hθ​(x(i))−y(i))xj(i)​(5)

    其中λ

    λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θjθj​都要先乘以一个小于1的因子,从而使得θjθj​不断减小,因此总得来看,θ

    θ是不断减小的。

    最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

    正则化参数的选择

    L1正则化参数

    通常越大的λ

    λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

    假设有如下带L1正则化项的代价函数:
    F(x)=f(x)+λ∣∣x∣∣1

    F(x)=f(x)+λ∣∣x∣∣1​
    其中xx是要估计的参数,相当于上文中提到的ww以及θθ. 注意到L1正则化在某些位置是不可导的,当λλ足够大时可以使得F(x)F(x)在x=0

    x=0时取到最小值。如下图:

    @图3 L1正则化参数的选择
    图3 L1正则化参数的选择

    分别取λ=0.5

    λ=0.5和λ=2λ=2,可以看到越大的λλ越容易使F(x)F(x)在x=0

    x=0时取到最小值。

    L2正则化参数

    从公式5可以看到,λ

    λ越大,θjθj​衰减得越快。另一个理解可以参考图2,λλ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值