算法导论示例-PriorityQueue

import java.util.EmptyStackException;

/**
 * Introduction to Algorithms, Second Edition 
 * 6.4 Priority queues
 * 
 * @author 土豆爸爸
 * 
 */
public class PriorityQueue<KeyType extends Comparable<KeyType>, T extends IPriorityQueueElement<KeyType>> {
    T[] array;

    int heapSize;

    /**
     * 构造函数
     * @param size 初始数组大小
     */
    @SuppressWarnings("unchecked")
    public PriorityQueue(int size) {
        array = (T[]) new IPriorityQueueElement[size];
    }

    /**
     * 获取当前heap中的最大值
     * 
     * @return 最大值
     */
    public T maximum() {
        return array[0];
    }

    /**
     * 获取当前heap中的最大值,并从heap中删除最大值
     * @return 最大值
     */
    public T extractMax() {
        if (heapSize < 1) {
            throw new EmptyStackException();
        }
        T max = array[0];
        array[0] = array[heapSize - 1];
        heapSize--;
        maxHeapify(0);
        return max;
    }

    /**
     * 插入一个元素
     * @param e
     */
    @SuppressWarnings("unchecked")
    public void insert(T e) {
        if (heapSize == array.length) {
            T[] newArray = (T[]) new IPriorityQueueElement[array.length * 2];
            System.arraycopy(array, 0, newArray, 0, array.length);
            array = newArray;
        }
        int i = heapSize++;
        array[i] = e;
        int p = parent(i); // 父结点索引
        while (i > 0 && array[p].getKey().compareTo(array[i].getKey()) < 0) {
            T temp = array[i];
            array[i] = array[p];
            array[p] = temp;
            i = p;
            p = parent(i);
        }
    }

    /**
     * 使数组的第i个元素按max heap规则重排
     * 
     * @param i
     *            元素索引
     */
    private void maxHeapify(int i) {
        int l = left(i);
        int r = right(i);
        int largest; // 当前结点/左子结点/右子结点中最大值的索引
        if (l < heapSize && array[l].getKey().compareTo(array[i].getKey()) > 0) {
            largest = l;
        } else {
            largest = i;
        }

        if (r < heapSize
                && array[r].getKey().compareTo(array[largest].getKey()) > 0) {
            largest = r;
        }

        if (largest != i) {
            // 如果最大值不是当前结点,进行交换
            T temp = array[i];
            array[i] = array[largest];
            array[largest] = temp;
            // 递归调用,直到当前结点比其子结点大
            maxHeapify(largest);
        }

    }

    /**
     * 计算结点索引为i的元素的父结点的索引
     * 
     * @param i
     *            当前索引
     * @return 父结点的索引
     */
    private int parent(int i) {
        return (i + 1) / 2 - 1;
    }

    /**
     * 计算结点索引为i的元素的左子结点的索引
     * 
     * @param i
     *            当前索引
     * @return 左子结点的索引
     */
    private int left(int i) {
        return 2 * i + 1;
    }

    /**
     * 计算结点索引为i的元素的右子结点的索引
     * 
     * @param i
     *            当前索引
     * @return 右子结点的索引
     */
    private int right(int i) {
        return 2 * i + 2;
    }
}

public interface IPriorityQueueElement<KeyType extends Comparable<KeyType>>{
    KeyType getKey();
}

import junit.framework.TestCase;

import junit.framework.TestCase;

public class PriorityQueueTest extends TestCase {
    class Element implements IPriorityQueueElement<Integer> {
        Integer key;

        public Element(Integer key) {
            this.key = key;
        }

        public Integer getKey() {
            return key;
        }
    }

    public void testMaximum() {
        PriorityQueue<Integer, Element> queue = new PriorityQueue<Integer, Element>(2);
        queue.insert(new Element(1));
        queue.insert(new Element(2));
        assertEquals(new Integer(2), queue.maximum().getKey());
        queue.insert(new Element(10));
        assertEquals(new Integer(10), queue.maximum().getKey());
        queue.insert(new Element(3));
        assertEquals(new Integer(10), queue.maximum().getKey());
    }
    
    public void testExtractMax() {
        PriorityQueue<Integer, Element> queue = new PriorityQueue<Integer, Element>(2);
        queue.insert(new Element(1));
        queue.insert(new Element(2));
        assertEquals(new Integer(2), queue.extractMax().getKey());
        assertEquals(new Integer(1), queue.maximum().getKey());
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值