分布式tensorflow测试 同步更新结果及问题

这篇博客记录了4个节点使用TensorFlow进行同步更新的测试过程,详细列出了每个任务ID在不同步骤的训练速度。尽管遇到了速度不一致和效率问题,但测试结果显示了分布式训练的基本流程。
摘要由CSDN通过智能技术生成

这一篇博客写了异步更新的结果,本篇是4个节点同步更新的测试结果,问题跟那篇博客一样。


task_id=0
step 5 (34.5 examples/sec; 3.708 sec/batch)
step 10 (31.8 examples/sec; 4.026 sec/batch)
step 10 (33.0 examples/sec; 3.880 sec/batch)
step 15 (32.7 examples/sec; 3.916 sec/batch)
step 15 (38.3 examples/sec; 3.341 sec/batch)
step 20 (33.0 examples/sec; 3.883 sec/batch)
step 25 (30.4 examples/sec; 4.215 sec/batch)
step 60 (34.1 examples/sec; 3.757 sec/batch)
step 65 (31.2 examples/sec; 4.104 sec/batch)


task_id=1
step 5 (27.1 examples/sec; 4.720 sec/batch)
step 5 (22.9 examples/sec; 5.582 sec/batch)
step 10 (23.7 examples/sec; 5.106 sec/batch)
step 15 (22.4 examples/sec; 5.727 sec/batch)
step 20 (22.5 examples/sec; 5.68

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值