广义线性模型(GLM),线性回归,逻辑回归

000
逻辑回归和线性回归是广义线性模型的特例

逻辑回归不是回归问题,不要被“回归”二字所欺骗。
回归模型和分类模型的区别:
回归模型的输出是连续的
分类模型的输出是离散的

线性回归

线性就是给出空间的很多点,然后画出穿过空间这些点的一条直线
n: 表示样本数量
x i x_i xi:P维的列向量shape=(p,1),
w i w_i wi:P维的列向量对应于 x i x_i xi的权重shape=(p,1), w i 和 x i 的 内 积 就 表 示 分 数 了 , 加 一 个 s i g m o i d 就 可 以 理 解 为 这 个 分 数 对 应 的 概 率 值 了 w_i和x_i的内积就表示分数了,加一个sigmoid就可以理解为这个分数对应的概率值了 wixisigmoid
y i y_i yi:一个类标签值为{0,1},
Y:是一个一维列向量shape=(n,1)
D:样本的集合 D = { ( x 1 , y i ) , ( x 2 , y 2 ) , ( x i , y i ) } D=\{(x_1,y_i),(x_2,y_2),(x_i,y_i)\} D={(x1,yi),(x2,y2),(xi,yi)}​​,
在这里插入图片描述
步骤:
1.写出平方损失函数,目标是最小化损失函数,目标是求出自变量w的值。
2.对损失函数求导为0得到最小值
3.求出参数w的值(二维平面中w就是斜率)

假设就2个样本(x1=0,y1=0),(x2=1,y2=1)我们想求出一条线来拟合这两个点。
所以我们的目标函数是 L ( w ) = ( w x 1 − y 1 ) 2 + ( w x 2 − y 2 ) 2 L(w)=(wx1-y1)^{2}+(wx2-y2)^{2} L(w)=(wx1y1)2+(wx2y2)2使其损失最小
我们对w求导的到:
L ′ ( w ) = 2 x 1 ( w x 1 − y 1 ) + 2 x 2 ( w x 2 − y 2 ) L'(w)=2x1(wx1-y1)+2x2(wx2-y2) L(w)=2x1(wx1y1)+2x2(wx2y2),令导数为0,我们可以求的最终的参数w的值
w = x 1 y 1 + x 2 y 2 x 1 2 + x 2 2 w=\frac{x1y1+x2y2}{x1^{2}+x2^{2}} w=x12+x22x1y1+x2y2,将真实的x1,y1,x2,y2的值代入我们就可以求出w的值了
当x是多维列向量时,方法也是一样,只不过不我们就得使用矩阵运算,包括矩阵一阶导数的学习。
需要学习内容,线性代数基本知识,求矩阵导数等。

逻辑回归:

使用线性模型加了逻辑函数去做分类。所以线性等于做回归又使用了逻辑函数,就叫逻辑回归了。
在这里插入图片描述

一般用作二分类问题,并给出相应的概率值。也可以扩展做多分类问题。概率值 P = s i g m o i d ( w x + b ) P=sigmoid(wx+b) P=sigmoidwx+b

然后使用最大似然估计算法得到损失函数在这里插入图片描述
之后使用梯度下降算法求最优解

sigmoid在这里插入图片描述

极大似然估计:

似然函数的求解步骤:
1.概率连乘
2.取对数
3.偏导为0,求出最大值

离散型模型
L ( θ ) = ∏ i = 1 n P θ ( X i = x i ) L(\theta)=\prod_{i=1}^{n}P_{\theta}(X_i=x_i) L(θ)=i=1nPθXi=xi)

似然函数的直观意义,刻画参数 θ \theta θ与数据的匹配程度。
比如
样本x 1 2
概率P θ \theta θ 1- θ \theta θ

假设有一个事件,共n个样本,1发生了n1次,2发生了n2次。真实1发生的概率n1/n
假设n的发生的概率为 θ \theta θ
这件事情(n个样本,样本1发生了n1次,样本2发生了n2次)发生的概率为 θ n 1 ( 1 − θ ) n 2 \theta^{n1}(1-\theta)^{n2} θn1(1θ)n2.也就是说当 θ = n 1 / n \theta=n1/n θ=n1/n为真实值的时候,上述概率最大.我们的目标是使上面概率最大,来求得自变量 θ \theta θ接近真实值的概率值。有时间去深入为什么连乘最大就是概率最大?
令目标函数 L ( θ ) = a r g m a x ( θ ) { θ n 1 ( 1 − θ ) n 2 } L(\theta)=argmax_{(\theta)}\{\theta^{n1}(1-\theta)^{n2}\} L(θ)=argmax(θ){θn1(1θ)n2} (使其发生的概率为最大值)

将其转化为对数似然(使连乘符号变为连加符号),两边同时取 ln ⁡ \ln ln
l n ( L ( θ ) ) = n 1 l n ( θ ) + n 2 l n ( θ ) ln(L(\theta))=n1ln(\theta)+n2ln(\theta) ln(L(θ))=n1ln(θ)+n2ln(θ) (使转化后的取最大,令导数为0)
l n ′ ( L ( θ ) ) = n 1 θ + n 2 θ ln'(L(\theta))=\frac{n1}{\theta}+\frac{n2}{\theta} ln(L(θ))=θn1+θn2=0
解得 θ = n 1 n 1 + n 2 = n 1 n \theta=\frac{n1}{n1+n2}=\frac{n1}{n} θ=n1+n2n1=nn1 由此可见,解得的参数值就是真实的为1样本的出现的概率。说明使用极大似然估计能够求得样本参数的真实分布。

加sigmoid函数的作用?

答:线性回归是在实数域范围内进行预测,而分类范围则需要在 [0,1],逻辑回归减少了预测范围;
线性回归在实数域上敏感度一致,而逻辑回归在 0 附近敏感,在远离 0 点位置不敏感,这个的好处就是模型更加关注分类边界,可以增加模型的鲁棒性。

极大似然估计和交叉熵推荐后的结果是一样的
逻辑回归和最大熵的区别?

答:逻辑回归和最大熵模型本质上没有区别,最大熵在解决二分类问题时就是逻辑回归,在解决多分类问题时就是多项逻辑回归。

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值