线性模型小结:还分不清线性回归和线性分类模型?

0. 写在前面

今天对线性模型做一个总结,围绕以下两个点理一理思路:

判别函数 - 决策函数;
线性模型 - 线性模型各类拓展

具体沿着以下几个问题展开:

1. 生成方法与判别方法
2. 判别函数与决策函数
3. 线性模型
4. 广义的线性模型
5. 解决非线性的分类问题
6. 解决多分类的问题

1. 线性模型

再谈线性模型之前,首先懂得区分一个点:
线性回归用于解决回归问题,而 LR 和 SVM等线性模型用于解决分类问题

线性模型 (Linear Model) 是机器学习中应用最广泛的模型, 指通过样本特征的线性组合来进行预测的模型.
在这里插入图片描述

注: f(x;w) 或 f(x;θ) 表示的意思是 f 是关于 x 的一元函数,w或θ 只是参数(而不是自变量)

2. 用于回归和分类

实际上 ,可以对线性模型 f(x) 施加任何形式的变换,即引入各种形式的决策函数,来解决各种不同的问题。

例如:

f(x)为离散的值:线性多分类模型
f(x)为实数域上实值函数:线性回归模型
f(x)为对数:对数线性模式
f(x)进行sigmoid非线性变换:对数几率回归

2.1 回归问题

对于回归问题,利用 f(x;w) 就可以直接进行预测: y = f(x;w),即决策函数(Decision Function)就是它自己,即就是一个实数域上实值函数,不需要经过其他变换。

决策函数:
A decision function is a function which takes a dataset as input and gives a decision as output.

2.2 分类问题

对于分类问题,因为输出目标 y 是一些离散的标签,而 f(x;w)的值域为实值,所以需要引入非线性变换来预测输出目标: y = g( f(x;w) ),在这种情况下,决策函数即为 g(·),用于预测输出目标(给出最终结果),f(x:w)也称为判别函数 (Discriminant Function)

判别函数:
Discriminant function is a function used for finding a decision boundary.

Discriminant function: a function of several variates used to assign items into one of two or more groups. The function for a particular set of items is obtained from measurements of the variates of items which belong to a known group.

区分决策函数(Decision Function)判别函数(Discriminant Function)
决策函数:任何函数,只要是以数据集作为输入,最终给出一个 decision 作为结果,就是决策函数;
判别函数:可以简单的理解为用于分类的函数。在实际应用中,判别与分类常常混在一起。在机器学习领域,判别与分类被称为有监督的学习。
所以,不论如何,交给决策函数做最后的决策!

补:常见的非线性函数
符号函数 Sign、Sigmoid 函数和 Relu函数,具体: 点击

将判别函数进行变换(引入非线性变换):

1. 若决策函数 g(·) 为符号函数(Sign Function)——用于二分类

符号函数:
在这里插入图片描述
比如,最简的神经网络模型——感知器:

在这里插入图片描述
感知器是一种简单的两类线性分类模型, 其分类准则与上述公式相同。

以及最为常用的二分类模型——支持向量机(SVM):
在这里插入图片描述
2. 若决策函数 g(·) 为sigmoid函数——对数几率回归(Logistic回归)
在这里插入图片描述

当然还有 Logistic 回归在多分类问题上的推广——Softmax 回归

(注:也可以用概率来进行解释,参考

3. 几个问题

3.1 如何解决分类问题

上面已经说过了,通过引入非线性的决策函数g(·),使得线性模型拥有了对离散值的预测能力,使其能解决分类问题。同时,满足线性判别函数 f(x:w)= 0所组成的点组成的便是一个分割超平面,称为决策边界决策平面
比如,Logistic 回归的决策边界便是 Sigmoid 函数的形状,可以解决之前无法做到的分类。

3.2 如何解决多分类问题:三种解决

多分类 (Multi-class Classification) 问题是指分类的类别数大于 2. 多分类一般需要多个线性判别函数, 但设计这些判别函数有很多种方式,下面三种方式比较常见:

  • “一对其余”(One VS Rest)
  • ”一对一“(One VS One)
  • argmax 方式:改进型的“一对其余”

或者更直白地分为两类:

  1. 间接法
  • ”一对一“(One VS One)
    任意两个样本之间训练一个分类模型,假设有k类,则需要k(k-1)/2个模型。对未知样本进行分类时,得票最多的类别即为未知样本的类别。libsvm使用这个方法。
  • “一对其余”(One VS Rest)
    训练时依次将某类化为类,将其他所有类别划分为另外一类,共需要训练k个模型。训练时具有最大分类函数值的类别是未知样本的类别。
  1. 直接法(一对其余的改进版)
    直接修改目标函数,将多个分类面的参数求解合并到一个目标函数上,一次性进行求解。

在这里插入图片描述
“一对其余” 方式和 “一对一” 方式都存在一个缺陷: 特征空间中会存在一些难以确定类别的区域, 而 “argmax” 方式很好地解决了这个问题.

3.3 如何解决线性不可分问题

  1. 利用特殊核函数,比如使用核函数的非线性SVM模型
  2. 其它,比如扩展LR(Logistic Regression)算法,提出FM算法,点击参考

4. 线性模型的损失函数

在这里插入图片描述在这里插入图片描述

参考:

  1. 《神经网络与深度学习》

  2. 机器学习模型/算法—— 阶段性总结(2):关键概念/技术

  3. 【机器学习】对数线性模型之Logistic回归和SoftMax回归,最大熵模型

  4. 逻辑回归(LR)个人学习总结篇

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值