问题描述
我们把一个数称为有趣的,当且仅当:
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3
【思路】
这道题前前后后做了快一晚上才完全正确,基本的思路是
枚举 0 和 1 在结果中的数目
i 个(至少
2 个,最多
n - 2 个)
此时 2 和 3 的数目就有 n - i 个
因为 0 不能开头,所以实际上选择的组合数是 个(在除去开头一位以外的位置中选择 i 个位置)
且 i 个 "01" 一共有 i - 1 种分配方案(从 1 个 0 到 i - 1 个 0)
n- i 个 "23" 一共有 n - i - 1 种分配方案(从 1 个 2 到 n - i - 1 个 2)
此时 2 和 3 的数目就有 n - i 个
因为 0 不能开头,所以实际上选择的组合数是 个(在除去开头一位以外的位置中选择 i 个位置)
且 i 个 "01" 一共有 i - 1 种分配方案(从 1 个 0 到 i - 1 个 0)
n- i 个 "23" 一共有 n - i - 1 种分配方案(从 1 个 2 到 n - i - 1 个 2)
所以答案可以通过计算总组合数得到
另外计算
的时候要注意方法小心超时,我一开始用http://my.oschina.net/psaux0/blog/214013里的第三种方法,结果超时了。。然后用第二种方法的递归实现,还是超时,最后将第二种方法用打表实现才成功AC。
【代码】
#include<iostream>
#include<math.h>
#include<cstring>
using namespace std;
#define mod 1000000007;
long long int c[2005][2005];
/*long long int c(int a,int b){
memset(fac,0,sizeof(fac));
for(int i=0;i<=b;i++){
fac[i]=1;
}
for(int i=1;i<=a-b;i++){
for(int j=1;j<=b;j++){
fac[j]=(fac[j]+fac[j-1])%mod;
}
}
return fac[b];
}*/
int main(){
int n;
long long int ans=0;
cin>>n;
memset(c,0,sizeof(c));
for(int i=1;i<=n;i++){
c[i][0]=1;
c[i][i]=1;
c[i][1]=i;
}
for(int i=1;i<=n;i++){
for(int j=0;j<=i;j++){
if(c[i][j]) continue;
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
}
for(int i=2;i<=n-2;i++){
ans=(ans+c[n-1][i]*(i-1)*(n-i-1))%mod;
}
cout<<ans<<endl;
return 0;
}