乘法逆元

前言:

我们知道在模意义下的加减乘运算都是具有封闭性的,但除法确是例外,所以我们就要找一种在模意义下代替除法运算的东西 
想看代码的在最下方

定义:

如果有ab≡1(modp)ab≡1(modp)则称b是mod p意义下a的乘法逆元。记b=inv(a)b=inv(a)或b=a−1b=a−1(定义了剩余系中的除法)

性质:

一个数有逆元的充分必要条件是gcd(a,n)=1gcd(a,n)=1,此时逆元唯一存在 
(ab)modp=((amodp)×(bmodp)modp(ab)modp=((amodp)×(bmodp)modp

求法:

1.扩展欧几里得 
ax≡1(modp)ax≡1(modp)可以等价的转化为ax−py=1ax−py=1 
然后套用exgcd解方程,并检查gcd(a,p)gcd(a,p)是否等于1 
如果gcd(a,p)=1gcd(a,p)=1,把xx调整到11~p−1p−1即可 
复杂度O(log n)O(log n)

2.费马小定理 
费马小定理的具体内容和证明请点击这里 
由ap−1≡1(mod p)ap−1≡1(mod p)得a×ap−2≡1(mod p)a×ap−2≡1(mod p) 
所以当模数是一个质数的时候,可以用费马小定理求解,即inv(i)=ip−2(mod p)inv(i)=ip−2(mod p),复杂度O(log n)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
int inv[1000010];

LL pow(LL a,LL b,LL mod)
{
    int ans=1;
    while(b)
    {
        if(b&1) ans=(ans*a)%mod;
        a=(a*a)%mod;
        b>>=1;
    }
    return ans;
} 

LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    LL GCD=exgcd(b,a%b,x,y);
    LL tmp=x;
    x=y;
    y=tmp-a/b*y;
    return GCD;
}

LL inv1(LL a,LL mod)//扩展欧几里得求逆元 
{
    LL x,y;
    LL d=exgcd(a,mod,x,y);
    if(d==1) return (x%mod+mod)%mod;
    return -1;
}

LL inv2(LL a,LL mod)//费马小定理
{
    return pow(a,mod-2,mod);
} 

 

 

引用来源:

https://blog.csdn.net/sdfzchy/article/details/76098066

https://blog.csdn.net/y20070316/article/details/50578435

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值