小白学RAG:从零开始的RAG最佳实践

检索增强生成(Retrieval Augmented Generation,简称RAG)已成为一种流行的范式,它使大型语言模型(LLMs)能够访问外部数据,并作为一种机制来减轻幻觉现象。

实现RAG时,可能会面临有效集成检索模型、高效表示学习、数据多样性、计算效率优化、评估和文本生成质量等挑战。鉴于这些挑战,每天都会出现新的技术来改进RAG,使得为特定问题尝试所有组合变得不可行。

在这种情况下,本文提出了实现、优化和评估RAG的最佳实践,特别是针对巴西葡萄牙语,重点在于建立一个简单的推理和实验流程。

https://arxiv.org/pdf/2401.07883

步骤1:数据集准备

作者们选择了巴西葡萄牙语版本的《哈利·波特》第一本书作为数据集。选择这本书的原因是它广为人知,并且Gemini ProOpenAI模型都能够回答有关这本书的一般性问题。

  • 数据集大小:使用标准的ChatGPT分词器cl100k_base,作者们观察到整本书大约有140,000个token,这使得可以创建包含整本书内容的提示。

  • 数据集构建:基于上述数据集,作者们开发了一个包含问题和对应答案的数据集。问题和答案都是由gpt-4模型生成的,并且基于一个参考块(chunk)。

数据准备过程:如图1所示,数据准备过程包括以下步骤:

  • 首先,将数据集分割成每个包含1000个token的块,没有重叠,总共得到140个块。

  • 然后,使用附录A中描述的提示,为每个块创建了一个问题和答案对,风格类似于SQuAD数据集,这意味着问题的答案存在于参考文本(块)中。

步骤2:定义评价指标

传统评估指标如BLEU和ROUGE可能无法准确捕捉句子之间的相似性。例如,尽管两个句子在翻译成英文后表达相同的意思,但它们的BLEU和ROUGE得分可能很低。

为了解决这个问题,作者们采用了一种在文献中广泛使用的方法,即利用gpt-4根据给定的提示为文本提供评分。作者们设计了一个分为5个类别的评分系统,用于比较两段文本,每个类别都有相应的分数定义。

评分类别

  • 分数1:答案与参考无关。

  • 分数3:答案有很少的相关性,但与参考不一致。

  • 分数5:答案有中等相关性,但包含不准确之处。

  • 分数7:答案与参考一致,但有小遗漏。

  • 分数10:答案完全准确,与参考完全一致。

步骤3:初步实验(无背景信息)

作者们首先定义了一个基线,即在没有任何上下文的情况下,使用大型语言模型(LLMs)回答关于《哈利·波特》的问题。由于LLMs训练于包含几乎整个网络内容的大型数据集上,加之《哈利·波特》宇宙的普及,这为在OpenAI模型上测试独立问题提供了一个强有力的假设。

作者们观察到,对于基本问题,如“哈利·波特是谁?”、“谁杀了邓布利多?”以及“哈利·波特的主要朋友是谁?”,ChatGPT能够准确回答。然而,对于更详细的问题,性能仅是合理的。文中提供了两个详细问题的例子及其答案。

表2显示了不同模型的平均得分和与相对最大得分相比的退化百分比。所有模型的得分都低于相对最大得分,表明在没有检索到的上下文的情况下,模型的性能有所下降。

步骤4:长文本问答实验

与GPT 1和2模型相比,gpt-4-1106-preview模型能够处理高达128k的输入token,这在模型发展的四年内代表了大约128倍的输入容量增加。

作者们进行了类似于"Lost in The Middle"的分析,探索了在提示中改变答案位置时模型的输出。实验通过改变包含问题答案的块的深度(以上下文提示中token总数的百分比增量)来进行。

步骤5:朴素RAG

朴素的RAG方法使用llama-index,采用所有默认的超参数,并使用ADA-002嵌入通过余弦相似度进行块检索。图4展示了问题处理的基本流程:

  • 步骤1:将查询传递给嵌入模型,将其语义表示为嵌入查询向量。

  • 步骤2:将嵌入的查询向量传输到向量数据库或稀疏索引(BM25)。

  • 步骤3:根据检索器算法获取前k个相关块。

  • 步骤4:将查询文本和检索到的块转发到大型语言模型(LLM)。

  • 步骤5:使用LLM根据检索内容填充的提示生成响应。

性能比较

  • gpt-4模型的平均得分为6.04,与相对最大得分相比退化了20%。

  • gpt-4-1106-preview模型的平均得分为5.74,退化了21.6%。

  • gpt-3.5-turbo-1106模型的平均得分为5.80,退化了21.0%。

从表3可以看出,尽管朴素的RAG方法在没有检索上下文的情况下相比基线有所提高,但与相对最大得分相比仍有性能退化。这表明还有改进空间,尤其是在检索策略和模型集成方面。

实验中,答案深度的变化以10%的增量表示,从0%到100%,共11个变化。输入上下文的token数量在x轴上以每1,000个token为间隔变化,如图2所示。

从图2可以看出,随着输入长度的增加,得分显著下降。此外,图3显示,位于(40%, 80%)区间内的答案表现最差,这与"Lost In The Middle"文章中的记录一致。

步骤6:对比检索器

本节探索了RAG的多种检索方法,认识到检索器的质量是提高这类问题性能的关键因素。

在部署检索系统时,需要在“有效性”(返回的结果有多好?)和“效率”(返回结果需要多长时间?或在磁盘/RAM/GPU方面使用了多少资源?)之间取得平衡。

评估指标:召回率和倒数排名在特定截止点进行评估,表示为R@k和MRR@k。

检索器类别

  • 稀疏检索器:强调BM25,这是一种基于统计权重评估搜索词和文档之间相关性的技术。

  • 密集检索器:通常基于双编码器(bi-encoder)设计,独立编码查询和文档,然后计算相似度。

  • 混合搜索技术:利用稀疏和密集搜索方法的优势,生成两个候选文档列表,然后以最佳方式组合这两个结果。

  • 多阶段搜索架构:基于检索和重排管道,第一阶段使用具有良好召回率的检索器进行初步筛选,然后在第二阶段使用更高计算复杂度的方法重新排序这些候选文档。

  • 稀疏检索方法

表4展示了使用不同BM25包的比较,包括使用Pyserini和rank-bm25的结果,以及使用这些实现的增益百分比。这表明Pyserini的实现在召回率方面优于rank-bm25,尤其是在较低的召回率k值下。

  • 定义化嵌入模型

嵌入定制对于提高表示的整体性能至关重要,且不仅适用于OpenAI的嵌入,也适用于其他同类嵌入。通过自定义ADA-002方法,作者们展示了如何通过微调过程来改善检索器的性能,特别是在准确性和表示质量方面。

  • 多路召回

RRF是一个广泛使用的算法,用于解决结合不同方法搜索结果的问题。对于文档集D和来自不同方法r的搜索结果R,对于D中的每个文档d,可以按照公式(2)计算RRF得分。从表5可以看出,混合使用BM25和自定义ADA-002的组合在所有召回率指标上都优于单独使用BM25或ADA-002的组合。

  • 重排序

多阶段排名将文档排名分为多个阶段。初始检索通常涉及稀疏检索器或密集检索器,每个后续阶段重新评估并重新排列从前一阶段转发的候选集。

  • 检索结果

表6展示了不同检索器的性能比较,包括ADA-002、自定义ADA-002、混合BM25-ADA-002、混合BM25-自定义ADA-002、BM25以及BM25加重排器。

步骤7:输入大小与性能

尽管在表6中对9个块实现了完美的召回率,并且使用了9000个token的输入,比最佳情况(3个块)多6000个token,但并未达到最佳性能。这与第4.2节中讨论的RAG质量直接与输入大小和答案所在位置有关的观点一致。


读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值