本节主要介绍多元函数导数(微分)的计算方法,包括:多元复合函数求导法则、多元隐函数求导、多元隐函数组求导三个子话题。
一、多元复合函数链导法
1,一元复合函数“链导法”
回顾一下,一元复合函数求导的方法 —— “链导法”(chain rule):
y=f(u),u=g(x)⇒dydx=dydu⋅dgdx
“链导法”这个名字很形象,由外而内逐层求导,像一个链条。事实上,“链导法”不仅适用于一元复合函数,也适用于多元复合函数。
2,一元与多元复合函数“链导法”
这类复合函数,从外层看是多元(二元)函数,从内层看是一元函数,如下:
z=f(u,v),u=φ(t),v=ψ(t)⇒dzdt=∂z∂ududt+∂z∂vdvdt
如上式,它在各个分量上面,也是由外而内逐层求导。不同的是,外层是偏导数(二元函数),内层是导数(一元函数)。
3,多元与多元复合函数“链导法”
这类复合函数,从外层和内层看都是多元(二元)函数,如下:
z=f(u,v),u=φ(x,y),v=ψ(x,y)⇒⎧⎩⎨⎪⎪⎪⎪⎪⎪∂z∂x=∂z∂u∂u∂x+∂z∂v∂v∂x∂z∂y=∂z∂u∂u∂y