用Python学《微积分B》(微分法)

这篇博客探讨了多元复合函数的微分计算,包括链导法、多元复合隐函数求导以及多元方程组求导。介绍了Python库sympy在求复合函数导数时的应用,并给出了具体的示例。同时,文章讲解了一元隐函数和多元隐函数的求导方法,以及雅可比矩阵在方程组求导中的作用。
摘要由CSDN通过智能技术生成

  本节主要介绍多元函数导数(微分)的计算方法,包括:多元复合函数求导法则、多元隐函数求导、多元隐函数组求导三个子话题。

一、多元复合函数链导法


1,一元复合函数“链导法”
  回顾一下,一元复合函数求导的方法 —— “链导法”chain rule):

y=f(u),u=g(x)dydx=dydudgdx

  “链导法”这个名字很形象,由外而内逐层求导,像一个链条。事实上,“链导法”不仅适用于一元复合函数,也适用于多元复合函数。
2,一元与多元复合函数“链导法”
  这类复合函数,从外层看是多元(二元)函数,从内层看是一元函数,如下:
z=f(u,v),u=φ(t),v=ψ(t)dzdt=zududt+zvdvdt

  如上式,它在各个分量上面,也是由外而内逐层求导。不同的是,外层是偏导数(二元函数),内层是导数(一元函数)。
3,多元与多元复合函数“链导法”
  这类复合函数,从外层和内层看都是多元(二元)函数,如下:
z=f(u,v),u=φ(x,y),v=ψ(x,y)zx=zuux+zvvxzy=zuuy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值