python微积分求面积_用Python学微积分(微积分应用)

本文深入探讨了如何使用Python进行微积分,特别是应用在计算平面面积上。文章介绍了微积分的五个关键步骤:分割、取点、近似、求和及误差分析,并详细讲解了直角坐标系和极坐标系下的分割方法,以及近似过程中的直线代曲线策略。同时,文章通过实例展示了在Python中实现微积分求解的具体方法。
摘要由CSDN通过智能技术生成

微积分是一种非常重要的“数学分析”思想(方法),在许多领域中都有应用,比如:计算平面面积、曲线长度、空间图形的体积、旋转曲面面积和物理学中的“微元法”等。而如何用好“微积分”是这部分学习的重点。要用好微积分,关键是理解透彻“微分-differential”和“定积分-Integral”的定义。微积分在英文中有时又被称为“Infinitesimal calculus”,即“无穷小量微积分”,这个名字从一定意义上可以帮助我们记忆“微积分”思想:在微观上上研究无穷小量的特征,找出规律,然后回到宏观上计算结果,控制误差。具体方法上,可以参考“Riemann积分”分为五步:分割、取点、近似、求和(求定积分)、分析误差。

一、分割

分割是微积分方法的第一步,也是微积分应用中非常重要的一步。算法中有“分而治之”的策略(Divide-and-conquer algorithms),微积分的“分割”也正暗合这种思想。另外所谓“微观化”,通俗理解就是取待研究的对象的一小部分作为单元,放大了仔细研究,找出特征,然后再总结整体规律。而微积分的“分割”也正是这个“取一小部分作为单元”。

普遍来说,有两种分割方式:直角坐标系分割和极坐标系分割。

1.直角坐标系分割

对于直角坐标系分割,我们已经和熟悉了,前面将定积分定义的时候,就是在直角坐标系下用“矩形逼近”的方法来计算曲线与x轴围成的面积。它是沿x轴分割成n小段{Δxi},即在直角坐标系下分割是按自变量进行分割。

当然,直角坐标系下也可以沿y轴分割,本质上,直角坐标系中沿x轴分割和沿y轴分割意义是一样的。将沿y轴分割看作是:

将函数关系反转,同时也将坐标轴反转。

2,极坐标系分割

同样地,极坐标也是按自变量分割。只是,直观上看,与直角坐标系的分割差异较大。如下图:

显然,极坐标分割的单元形状类似三角形而不是梯形或矩形。

总结:

不论是什么坐标系,都是按自变量进行分割。这是由函数的映射关系决定的,已知自变量,通过函数运算,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值