Problem Description
求n个数的最小公倍数。
Input
输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数。
Output
为每组测试数据输出它们的最小公倍数,每个测试实例的输出占一行。你可以假设最后的输出是一个32位的整数。
注意gcd的写法,太久不写快忘了,另外注意最小公倍数乘以最大公约数等于两个数的乘积,于是将求最小公倍数转化为求最大公约数的问题。
最后注意先除再乘避免超过int范围,这点比较坑。。。。。
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Scanner;
public class Main {
final static double pi = Math.acos(-1);
final static int count[] = {100,50,10,5,2,1};
public static int Gcd(int x,int y)
{
if(y==0)
return x;
return Gcd(y,x%y);
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while(cin.hasNext())
{
int n = cin.nextInt();
int a[] = new int[n+1];
for(int i=1;i<=n;i++)
a[i] = cin.nextInt();
int gcd = a[1];
int ans = a[1];
for(int i=2;i<=n;i++)
{
gcd = Gcd(ans,a[i]);
ans = ans/gcd*a[i];//先除再乘避免超过int范围
}
System.out.println(ans);
}
cin.close();
}
}