高等数学精解【1】

二元线性方程组

消去法

{ a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 b 2 ∗ 第 1 个方程, b 1 ∗ 第 2 个方程 { a 1 b 2 x + b 1 b 2 y = c 1 b 2 a 2 b 1 x + b 1 b 2 y = c 2 b 1 ( a 1 b 2 − a 2 b 1 ) x = c 1 b 2 − c 2 b 1 = > x = c 1 b 2 − c 2 b 1 a 1 b 2 − a 2 b 1 同理消去 x ,求 y y = a 1 c 2 − a 2 c 1 a 1 b 2 − a 2 b 1 \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} \\b_2*第1个方程,b_1*第2个方程 \\\begin{cases} a_1b_2x+b_1b_2y=c_1b_2 \\ a_2b_1x + b_1b_2y = c_2b_1 \end{cases} \\(a_1b_2-a_2b_1)x=c_1b_2-c_2b_1=>x=\frac {c_1b_2-c_2b_1} {a_1b_2-a_2b_1} \\同理消去x,求y \\y=\frac {a_1c_2-a_2c_1} {a_1b_2-a_2b_1} {a1x+b1y=c1a2x+b2y=c2b21个方程,b12个方程{a1b2x+b1b2y=c1b2a2b1x+b1b2y=c2b1a1b2a2b1)x=c1b2c2b1=>x=a1b2a2b1c1b2c2b1同理消去x,求yy=a1b2a2b1a1c2a2c1

理论基础

下面内容来自文心一言自动生成。
二元线性方程组是包含两个未知数,且每个未知数的次数都是1的方程组。它的一般形式可以表示为:

{ a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} {a1x+b1y=c1a2x+b2y=c2

其中, a 1 , b 1 , c 1 , a 2 , b 2 , c 2 a_1, b_1, c_1, a_2, b_2, c_2 a1,b1,c1,a2,b2,c2 是常数,且 a 1 a_1 a1 a 2 a_2 a2 不同时为零, b 1 b_1 b1 b 2 b_2 b2 也不同时为零。

解法

1. 代入法
  1. 选择一个方程:选择一个方程,从中解出一个未知数作为另一个未知数的函数。
  2. 代入另一个方程:将解出的未知数代入另一个方程中,得到一个只含有一个未知数的方程。
  3. 解这个方程:解出这个一元一次方程,得到其中一个未知数的值。
  4. 回代求解:将求得的未知数的值代入任何一个原方程中,求出另一个未知数的值。
2. 消元法
  1. 选择消元对象:通常选择系数较简单或相等的未知数进行消元。
  2. 通过加减消元:对两个方程进行加减运算,使其中一个未知数的系数相等(或互为相反数),从而消去这个未知数。
  3. 解一元一次方程:得到一个只含有一个未知数的方程,解这个方程。
  4. 回代求解:将求得的未知数的值代入任何一个原方程(或消元后的方程)中,求出另一个未知数的值。
3. 矩阵法

对于二元线性方程组,也可以使用矩阵和行列式来求解。方程组可以表示为增广矩阵:

( a 1 b 1 c 1 a 2 b 2 c 2 ) \left( \begin{array}{cc|c} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{array} \right) (a1a2b1b2c1c2)

通过计算系数矩阵的行列式( D = a 1 b 2 − a 2 b 1 D = a_1b_2 - a_2b_1 D=a1b2a2b1)和增广矩阵的行列式(分别用 D x D_x Dx D y D_y Dy表示,其中 D x D_x Dx是将增广矩阵中 x x x的系数列替换为常数列得到的行列式, D y D_y Dy同理),然后使用公式:

x = D x D , y = D y D x = \frac{D_x}{D}, \quad y = \frac{D_y}{D} x=DDx,y=DDy

来求解。但注意,当 D = 0 D = 0 D=0时,方程组可能无解或有无穷多解。

示例

解方程组:

{ 2 x + y = 5 3 x − 2 y = 8 \begin{cases} 2x + y = 5 \\ 3x - 2y = 8 \end{cases} {2x+y=53x2y=8

使用消元法:

  1. 将第一个方程乘以2,第二个方程乘以1,然后相加,以消去 y y y

2 ( 2 x + y ) + ( 3 x − 2 y ) = 2 × 5 + 8 2(2x + y) + (3x - 2y) = 2 \times 5 + 8 2(2x+y)+(3x2y)=2×5+8

得到:

7 x = 18    ⟹    x = 18 7 7x = 18 \implies x = \frac{18}{7} 7x=18x=718

  1. x = 18 7 x = \frac{18}{7} x=718 代入任一原方程求解 y y y,例如代入第一个方程:

2 ( 18 7 ) + y = 5 2 \left( \frac{18}{7} \right) + y = 5 2(718)+y=5

解得:

y = 5 − 36 7 = − 11 7 y = 5 - \frac{36}{7} = \frac{-11}{7} y=5736=711

所以,方程组的解为:

( 18 7 , − 11 7 ) \left( \frac{18}{7}, \frac{-11}{7} \right) (718,711)

二阶行列式

定义

1. 矩阵 ( a b c d ) 行列式 ∣ a b c d ∣ = a d − b c 1.矩阵\begin{pmatrix} a & b \\ c & d \end{pmatrix} \\行列式\begin{vmatrix} a & b \\ c & d \end{vmatrix}=ad-bc \\ 1.矩阵(acbd)行列式 acbd =adbc
{ a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 2. Δ = ∣ a 1 b 1 a 2 b 2 ∣ Δ x = ∣ c 1 b 1 c 2 b 2 ∣ Δ y = ∣ a 1 c 1 a 2 c 2 ∣ x = Δ x Δ y = Δ y Δ 3. Δ ≠ 0 ,方程有唯一解 Δ = 0 , Δ x 和 Δ y 至少一个不为 0 ,则方程无解 Δ = Δ x = Δ y = 0 ,则方程无限组解 \begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} \\2.\Delta=\begin{vmatrix} a_1 & b_1 \\ a_2& b_2 \end{vmatrix} \\\Delta_x=\begin{vmatrix} c_1 & b_1 \\ c_2& b_2 \end{vmatrix} \\\Delta_y=\begin{vmatrix} a_1 & c_1 \\ a_2& c_2 \end{vmatrix} \\x=\frac {\Delta_x} {\Delta} \\y=\frac {\Delta_y} {\Delta} \\3.\Delta \ne 0,方程有唯一解 \\\Delta =0,\Delta_x和\Delta_y至少一个不为0,则方程无解 \\\Delta=\Delta_x=\Delta_y=0,则方程无限组解 {a1x+b1y=c1a2x+b2y=c22.Δ= a1a2b1b2 Δx= c1c2b1b2 Δy= a1a2c1c2 x=ΔΔxy=ΔΔy3.Δ=0,方程有唯一解Δ=0,ΔxΔy至少一个不为0,则方程无解Δ=Δx=Δy=0,则方程无限组解

理论基础

以下内容来自文心一言自动生成
二阶行列式是线性代数中的一个基本概念,用于表示一个2x2矩阵的行列式。给定一个2x2矩阵

A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd)

其二阶行列式定义为:

∣ A ∣ = det ⁡ ( A ) = a d − b c |A| = \det(A) = ad - bc A=det(A)=adbc

这里, a , b , c , d a, b, c, d a,b,c,d 是矩阵 A A A 的元素, det ⁡ ( A ) \det(A) det(A) 表示矩阵 A A A 的行列式。

二阶行列式具有一些重要的性质,例如:

  1. 交换性:对于二阶行列式,交换行(或列)的位置,行列式的值不变(但在这个特定情况下,由于只有两行两列,交换行和列的效果是相同的)。然而,对于更高阶的行列式,交换两行(或两列)会改变行列式的符号。

  2. 线性性质:如果矩阵的某一行(或列)是另外两行(或两列)的线性组合,那么该矩阵的行列式等于这个线性组合中各项的行列式之和,但每一项的行列式都要乘以相应的系数。这个性质在二阶行列式中不直接体现,但它是更一般行列式性质的一个特例。

  3. 三角矩阵的行列式:如果矩阵是上三角或下三角的(即所有非对角线上的元素都为0),那么它的行列式等于其主对角线上元素的乘积。对于二阶行列式,这意味着 ∣ A ∣ = a d |A| = ad A=ad(如果它是上三角或下三角的,但通常二阶矩阵不是这种情况,除非 b = 0 b = 0 b=0 c = 0 c = 0 c=0)。

二阶行列式在线性代数、解线性方程组、计算矩阵的逆等方面都有重要的应用。

三阶行列式

性质

  • 行列式转置,即行改列,列改行,值不变。
  • 对调行列式两行或两列,行列式符号改变,绝对值不变
  • 两行或两列相同的行列式的值必等于零
  • 把一个行列式的某行或某列所有元素同乘以某一个数k的结果,等于以数k乘这个行列式。
  • 一个行列式中某一行或某一列的各元素公因子可提到行列式记号外边
  • 如果某行列式中有一行或一列的元素全部是0,这个行列式等于0
  • 如果行列式的两行或两列对应元素成比例,该行列式等于0

理论基础

以下内容来自文心一言自动生成

概述

三阶行列式是行列式的一种,其阶数为3,即它是一个3x3的矩阵。三阶行列式的计算可以通过一种称为“萨鲁斯(Sarrus)法则”或“对角线法则”的简化方法来完成,尽管这种方法在理论上可行,但在处理更复杂的行列式或需要严谨证明时,通常使用更一般的行列式定义或拉普拉斯展开法。

不过,为了解释“对角线法则”,我们可以这样描述(注意:这种方法仅适用于三阶行列式,并且在某些情况下可能会引入错误,特别是在行列式中有零元素时):

假设有三阶行列式如下:

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a11a21a31a12a22a32a13a23a33

按照“对角线法则”,行列式的值可以通过以下方式计算:

  • 主对角线(从左上角到右下角)上的元素相乘,然后减去次对角线(从右上角到左下角)上的元素相乘。

即:

行列式 = a 11 a 22 a 33 − a 13 a 22 a 31 + a 12 a 23 a 31 − a 11 a 23 a 32 + a 13 a 21 a 32 − a 12 a 21 a 33 \text{行列式} = a_{11}a_{22}a_{33} - a_{13}a_{22}a_{31} + a_{12}a_{23}a_{31} - a_{11}a_{23}a_{32} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} 行列式=a11a22a33a13a22a31+a12a23a31a11a23a32+a13a21a32a12a21a33

但请注意,这种方法虽然简单直观,但并不总是可靠的,特别是在处理包含零元素或需要更严谨计算的场合。

计算

更一般地,三阶行列式可以通过将其拆分为三个二阶行列式的和(利用拉普拉斯展开法)来计算,但这种方法在理解和执行上可能更为复杂。对于大多数实际应用和理论证明,使用行列式的定义(即所有可能的排列的符号乘积的和)或递归方法(如按行或列展开)更为常见。

三阶行列式的计算通常不使用“对角线法则”(因为它在某些情况下可能不准确),而是使用更一般的行列式定义或按行/列展开的方法。以下是按行或列展开来计算三阶行列式的一个例子:

假设我们有以下三阶行列式:

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} a11a21a31a12a22a32a13a23a33

我们可以选择按第一行展开,这涉及到将第一行的每个元素乘以它对应的二阶余子式(即去掉该元素所在行和列后剩下的2x2矩阵的行列式),并考虑符号(正负交替):

行列式 = a 11 ∣ a 22 a 23 a 32 a 33 ∣ − a 12 ∣ a 21 a 23 a 31 a 33 ∣ + a 13 ∣ a 21 a 22 a 31 a 32 ∣ \text{行列式} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} 行列式=a11 a22a32a23a33 a12 a21a31a23a33 +a13 a21a31a22a32

然后,我们需要计算每个二阶行列式的值。二阶行列式的计算相对简单,它是主对角线上元素的乘积减去次对角线上元素的乘积:

∣ a b c d ∣ = a d − b c \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc acbd =adbc

将上述公式应用到我们的二阶余子式中,我们得到:

行列式 = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) \text{行列式} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) 行列式=a11(a22a33a23a32)a12(a21a33a23a31)+a13(a21a32a22a31)

这就是三阶行列式按第一行展开的计算方法。类似地,你也可以选择按其他行或列展开,结果应该是相同的(根据行列式的性质)。

注意:在实际计算中,如果行列式中有零元素,那么选择包含这些零元素的行或列进行展开可以简化计算。此外,行列式的值不随行或列的交换而改变(但会改变符号),这可以用于简化计算过程。

参考文献

1.文心一言
2.《高等数学讲义》

  • 17
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值