高等数学精解【6】

直线与二元一次方程

直线方程

斜率

  • 直线对于 x 轴的倾角,平行于 x 轴,倾角为 0 , 0 ≤ a < π 直线对于 x轴的倾角,平行于x轴,倾角为0,0\le a\lt \pi 直线对于x轴的倾角,平行于x轴,倾角为00a<π
    在这里插入图片描述
  • 斜率
    斜率,在数学中,特别是解析几何中,是一个非常重要的概念。它描述了直线上任意两点间纵坐标差与横坐标差之间的比值,也可以理解为直线倾斜的程度。

下面由文心一言自动生成
定义

对于直线上的任意两点 P 1 ( x 1 , y 1 ) P_1(x_1, y_1) P1(x1,y1) P 2 ( x 2 , y 2 ) P_2(x_2, y_2) P2(x2,y2)(其中 x 1 ≠ x 2 x_1 \neq x_2 x1=x2),直线的斜率
k k k 定义为:

k = y 2 − y 1 x 2 − x 1 k = \frac{y_2 - y_1}{x_2 - x_1} k=x2x1y2y1

这个公式告诉我们,斜率 k k k 是直线上升(或下降)的“速度”或“比率”。

性质

  1. 斜率与倾斜角:斜率 k k k 与直线向上的倾斜角 α \alpha α 的关系是 k = tan ⁡ ( α ) k = \tan(\alpha) k=tan(α),其中 α ∈ [ 0 , π ) \alpha \in [0, \pi) α[0,π)
  2. 斜率与直线方向
    • k > 0 k > 0 k>0 时,直线从左下方向右上方倾斜。
    • k < 0 k < 0 k<0 时,直线从左上方向右下方倾斜。
    • k = 0 k = 0 k=0 时,直线与x轴平行或重合。
    • k k k 不存在(即 x 1 = x 2 x_1 = x_2 x1=x2)时,直线与y轴平行或重合。
  3. 斜率与垂直:如果两条直线的斜率分别为 k 1 k_1 k1 k 2 k_2 k2,且 k 1 × k 2 = − 1 k_1 \times k_2 = -1 k1×k2=1,则这两条直线垂直。 应用

斜率在日常生活和工程中有广泛的应用,如:

  • 在地图和导航中,斜率可以帮助我们理解地形的起伏。
  • 在建筑和土木工程中,斜率用于计算斜坡的稳定性和设计排水系统。
  • 在经济学中,斜率用于分析供需曲线和边际效用等概念。

示例

考虑直线上的两点 A ( 1 , 2 ) A(1, 2) A(1,2) B ( 4 , 6 ) B(4, 6) B(4,6),求这条直线的斜率。

解:根据斜率的定义,有

k = y 2 − y 1 x 2 − x 1 = 6 − 2 4 − 1 = 4 3 k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{4 - 1} = \frac{4}{3} k=x2x1y2y1=4162=34

所以,这条直线的斜率为 4 3 \frac{4}{3} 34

  • 斜率方程
    斜率作为数学中的一个重要概念,主要用于描述直线或曲线的倾斜程度。
    斜率有多种表示方法,以下是一些常见的斜率方程和公式:

以下内容由文心一言自动生成
1. 两点式斜率公式

对于直线上的两点 P 1 ( x 1 , y 1 ) P_1(x_1, y_1) P1(x1,y1) P 2 ( x 2 , y 2 ) P_2(x_2, y_2) P2(x2,y2)(且 x 1 ≠ x 2 x_1 \neq x_2 x1=x2),直线的斜率 k k k
可以用以下公式表示:

k = y 2 − y 1 x 2 − x 1 k = \frac{y_2 - y_1}{x_2 - x_1} k=x2x1y2y1

这个公式直接通过两点间的纵坐标差与横坐标差来计算斜率,是最基本的斜率计算方法。

2. 斜截式方程

对于一条不垂直于x轴的直线,如果已知其斜率 k k k 和在y轴上的截距 b b b,则该直线可以表示为斜截式方程:

y = k x + b y = kx + b y=kx+b

其中, k k k 就是直线的斜率。

3. 点斜式方程

如果已知直线上的一点 P ( x 0 , y 0 ) P(x_0, y_0) P(x0,y0) 和直线的斜率 k k k,则该直线可以表示为点斜式方程:

y − y 0 = k ( x − x 0 ) y - y_0 = k(x - x_0) yy0=k(xx0)

这个方程通过点和斜率来确定直线的位置。

4. 一般式方程中的斜率

对于直线的一般式方程 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0(其中 A , B A, B A,B 不同时为0),直线的斜率 k k k 可以用以下公式表示:

k = − A B k = -\frac{A}{B} k=BA

这个公式通过直线的一般式方程来求解斜率。注意,当 B = 0 B = 0 B=0 时,直线垂直于x轴,此时斜率不存在。

5. 斜率与倾斜角的关系

斜率 k k k 与直线向上的倾斜角 α \alpha α(其中 α ∈ [ 0 , π ) \alpha \in [0, \pi) α[0,π))的关系是 k = tan ⁡ ( α ) k = \tan(\alpha) k=tan(α)。这个关系建立了斜率与直线倾斜角之间的直接联系。

总结

斜率是描述直线或曲线倾斜程度的重要参数,在解析几何中有多种表示方法。常见的斜率方程包括两点式斜率公式、斜截式方程、点斜式方程以及一般式方程中的斜率表示。此外,斜率还与直线的倾斜角有直接的数学关系。

两点式方程

两点式方程,也称为两点式直线方程,是描述一条直线通过两个已知点 P 1 ( x 1 , y 1 ) P_1(x_1, y_1) P1(x1,y1) P 2 ( x 2 , y 2 ) P_2(x_2, y_2) P2(x2,y2)(且 x 1 ≠ x 2 x_1 \neq x_2 x1=x2)的方程。这个方程直接由两点的坐标和直线的斜率得出,但更常见的形式是直接从两点坐标出发,避免显式地计算斜率。

以下内容由文心一言自动生成
两点式方程可以表示为:

y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} y2y1yy1=x2x1xx1

这个方程表示的是,对于直线上的任意一点 ( x , y ) (x, y) (x,y),其坐标 ( x , y ) (x, y) (x,y) 与已知点 P 1 ( x 1 , y 1 ) P_1(x_1, y_1) P1(x1,y1)
P 2 ( x 2 , y 2 ) P_2(x_2, y_2) P2(x2,y2)
的坐标之间的关系。这个方程实际上是通过斜率相等(即两点间纵坐标差与横坐标差之比相等)来定义的,但在这里我们直接使用了坐标来表示。

注意,当 x 1 = x 2 x_1 = x_2 x1=x2 时,即两点横坐标相同,直线垂直于x轴,此时方程不适用(因为分母会为零),而应该直接写出 x = x 1 x = x_1 x=x1(或 x = x 2 x = x_2 x=x2)作为直线的方程。

另外,虽然两点式方程在形式上与斜率公式有些相似,但它更侧重于通过两个点的坐标来直接描述直线,而无需显式地计算出斜率。在实际应用中,如果已知直线上的两个点,使用两点式方程可以非常方便地表示出这条直线。

截距式方程

截距式方程是直线方程的一种形式,它特别适用于描述一条直线与坐标轴的交点(即截距)已知的情况。

以下内容由文心一言自动生成
对于一条直线,如果它在x轴上的截距为 a a a(即直线与x轴交于点 ( a , 0 ) (a,0) (a,0)),在y轴上的截距为 b b b(即直线与y轴交于点 ( 0 , b ) (0,b) (0,b)),且 a ≠ 0 a \neq 0 a=0 b ≠ 0 b \neq 0 b=0,则这条直线的截距式方程可以表示为:

x a + y b = 1 \frac{x}{a} + \frac{y}{b} = 1 ax+by=1

这个方程表示的是,对于直线上的任意一点 ( x , y ) (x, y) (x,y),其横坐标 x x x a a a的比值加上纵坐标 y y y b b b的比值等于1。

需要注意的是,当直线与x轴或y轴平行时,截距式方程可能不适用。具体来说:

  • 如果直线与x轴平行(即斜率为0),则 b b b为无穷大,此时方程不适用,而应该直接写出 y = c y = c y=c(其中 c c c为常数)的形式。
  • 如果直线与y轴平行(即斜率不存在),则 a a a为0,此时方程同样不适用,而应该直接写出 x = d x = d x=d(其中 d d d为常数)的形式。

但在实际应用中,我们通常会避免使用截距式方程来描述与坐标轴平行的直线,而是直接采用斜截式( y = m x + b y = mx + b y=mx+b,其中 m m m为斜率, b b b为y轴截距)或点斜式( y − y 1 = m ( x − x 1 ) y - y_1 = m(x - x_1) yy1=m(xx1),其中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)为直线上一点, m m m为斜率)等其他形式。

另外,如果直线过原点(即与两坐标轴的截距都为0),则截距式方程也不适用,此时应直接写出 y = k x y = kx y=kx(其中 k k k为斜率)的形式。但需要注意的是,在原点处,截距式方程 x 0 + y 0 = 1 \frac{x}{0} + \frac{y}{0} = 1 0x+0y=1是无意义的,因此不能用于描述过原点的直线。

  • 例题

以下内容由文心一言自动生成
以下是一些关于截距式方程的例题及其解答:

例题1 已知直线与x轴的交点为 ( 3 , 0 ) (3,0) (3,0),与y轴的交点为 ( 0 , 4 ) (0,4) (0,4),求该直线的截距式方程。

解答: 根据截距式方程的定义,直接写出: x 3 + y 4 = 1 \frac{x}{3} + \frac{y}{4} = 1 3x+4y=1

例题2 已知直线在x轴和y轴上的截距分别为 − 2 -2 2 5 5 5,求该直线的截距式方程。

解答: 注意截距可以是负数,所以直接写出: x − 2 + y 5 = 1 \frac{x}{-2} + \frac{y}{5} = 1 2x+5y=1通常我们保留原始形式,即: x − 2 + y 5 = 1 \frac{x}{-2} + \frac{y}{5} = 1 2x+5y=1

例题3 已知直线过点 ( 1 , 2 ) (1,2) (1,2) ( 3 , 0 ) (3,0) (3,0),求该直线的截距式方程。

解答: 首先,我们需要找到这条直线与x轴和y轴的交点。

  • 与x轴的交点:令 y = 0 y=0 y=0,解方程得到x坐标。但这里我们已知一个点为 ( 3 , 0 ) (3,0) (3,0),所以与x轴的交点为 ( 3 , 0 ) (3,0) (3,0)
  • 与y轴的交点:令 x = 0 x=0 x=0,由于我们不知道y坐标,需要先求出直线的斜率。斜率 k = y 2 − y 1 x 2 − x 1 = 0 − 2 3 − 1 = − 1 k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 2}{3 - 1} = -1 k=x2x1y2y1=3102=1。然后利用点斜式方程 y − y 1 = k ( x − x 1 ) y - y_1 = k(x - x_1) yy1=k(xx1),取 x 1 = 0 , y 1 = y x_1 = 0, y_1 = y x1=0,y1=y(y为y轴截距,待求),得到 y − y = − 1 ( 0 − 1 ) y - y = -1(0 - 1) yy=1(01),解得 y = 1 y = 1 y=1。所以与y轴的交点为 ( 0 , 1 ) (0,1) (0,1)

现在我们可以写出截距式方程: x 3 + y 1 = 1 \frac{x}{3} + \frac{y}{1} = 1 3x+1y=1 简化得: x 3 + y = 1 \frac{x}{3} + y = 1 3x+y=1

注意:在例题3中,我们实际上并没有直接使用截距式方程的定义来求解,而是先通过其他方法找到了与坐标轴的交点。但在某些情况下,如果直接给出了与坐标轴的交点,或者可以很容易地通过其他方式找到这些交点,那么就可以直接使用截距式方程的定义来求解。

另外,例题3中的解法也展示了如何在不知道与坐标轴交点的情况下,通过其他已知条件(如直线上的两点)来求解直线的截距式方程。这通常涉及到先求出直线的斜率,然后再利用斜率和其他条件来求出与坐标轴的交点。但在本题中,由于已经给出了一个与x轴的交点,所以我们只需要求出与y轴的交点即可。

将不同形式的直线方程转换为截距方程

将直线方程转换为截距方程,主要是要找到这条直线与x轴和y轴的交点,即找到x截距和y截距。截距方程的一般形式是 x a + y b = 1 \frac{x}{a} + \frac{y}{b} = 1 ax+by=1,其中 a a a 是x截距, b b b 是y截距。

以下内容由文心一言自动生成

  1. 斜截式方程 y = m x + b y = mx + b y=mx+b
  • x截距:令 y = 0 y = 0 y=0,解得 x = − b m x = -\frac{b}{m} x=mb(如果 m ≠ 0 m \neq 0 m=0)。
  • y截距:直接给出为 b b b
  • 截距方程 x − b m + y b = 1 \frac{x}{-\frac{b}{m}} + \frac{y}{b} = 1 mbx+by=1,化简得 m x b + y b = 1 \frac{mx}{b} + \frac{y}{b} = 1 bmx+by=1,再化简为 x − b m + y b = 1 \frac{x}{-\frac{b}{m}} + \frac{y}{b} = 1 mbx+by=1(注意保持分母形式以符合截距方程的标准形式,但通常我们会选择更简洁的形式)。
  1. 一般式方程 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0
  • x截距:令 y = 0 y = 0 y=0,解得 x = − C A x = -\frac{C}{A} x=AC(如果 A ≠ 0 A \neq 0 A=0)。
  • y截距:令 x = 0 x = 0 x=0,解得 y = − C B y = -\frac{C}{B} y=BC(如果 B ≠ 0 B \neq 0 B=0)。
  • 截距方程 x − C A + y − C B = 1 \frac{x}{-\frac{C}{A}} + \frac{y}{-\frac{C}{B}} = 1 ACx+BCy=1,化简得 − A x C − B y C = 1 -\frac{Ax}{C} - \frac{By}{C} = 1 CAxCBy=1
  1. 点斜式方程 y − y 1 = m ( x − x 1 ) y - y_1 = m(x - x_1) yy1=m(xx1)
  • 首先,将点斜式方程转换为斜截式方程 y = m x + ( y 1 − m x 1 ) y = mx + (y_1 - mx_1) y=mx+(y1mx1)
  • 然后,按照斜截式方程的步骤找到x截距和y截距。
  • 最后,写出截距方程。

示例

将直线方程 2 x + 3 y − 6 = 0 2x + 3y - 6 = 0 2x+3y6=0 转换为截距方程。

  • 一般式方程 2 x + 3 y − 6 = 0 2x + 3y - 6 = 0 2x+3y6=0
  • 找x截距:令 y = 0 y = 0 y=0,解得 x = 3 x = 3 x=3
  • 找y截距:令 x = 0 x = 0 x=0,解得 y = 2 y = 2 y=2
  • 截距方程 x 3 + y 2 = 1 \frac{x}{3} + \frac{y}{2} = 1 3x+2y=1

注意:在转换过程中,如果直线与某个坐标轴平行(即斜率为0或无穷大),则相应的截距为无穷大,此时截距方程不适用。但在实际情况下,我们通常会避免使用截距方程来描述这样的直线。

直线的一般方程

直线的一般方程是描述直线在二维平面上位置的一种基本方式,它通常表示为两个变量的线性组合等于一个常数的形式。具体来说,直线的一般方程可以写为:

A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0

其中, A A A B B B C C C 是常数,且 A A A B B B 不能同时为零(否则方程将退化为一个常数等于零的无效方程,或者只涉及一个变量,从而不表示一条直线)。

以下内容由文心一言自动生成
几何意义

  • 斜率:直线的斜率 m m m(如果存在)可以通过方程中的系数 A A A B B B 来计算,即 m = − A B m = -\frac{A}{B} m=BA(注意,当 B = 0 B = 0 B=0 时,直线垂直于x轴,斜率不存在)。
  • 截距
    • x截距:直线与x轴的交点(即 y = 0 y = 0 y=0 时的 x x x 值),可以通过令 y = 0 y = 0 y=0 并解方程 A x + C = 0 Ax + C = 0 Ax+C=0 来找到,结果为 x = − C A x = -\frac{C}{A} x=AC(如果 A ≠ 0 A \neq 0 A=0)。
    • y截距:直线与y轴的交点(即 x = 0 x = 0 x=0 时的 y y y 值),可以通过令 x = 0 x = 0 x=0 并解方程 B y + C = 0 By + C = 0 By+C=0 来找到,结果为 y = − C B y = -\frac{C}{B} y=BC(如果 B ≠ 0 B \neq 0 B=0)。

例题

例题1:求直线 3 x − 2 y + 4 = 0 3x - 2y + 4 = 0 3x2y+4=0 的斜率和与坐标轴的交点。

解答

  • 斜率:由方程 3 x − 2 y + 4 = 0 3x - 2y + 4 = 0 3x2y+4=0 可知, A = 3 A = 3 A=3 B = − 2 B = -2 B=2,所以斜率 m = − A B = − 3 − 2 = 3 2 m = -\frac{A}{B} = -\frac{3}{-2} = \frac{3}{2} m=BA=23=23
  • x截距:令 y = 0 y = 0 y=0,代入方程得 3 x + 4 = 0 3x + 4 = 0 3x+4=0,解得 x = − 4 3 x = -\frac{4}{3} x=34
  • y截距:令 x = 0 x = 0 x=0,代入方程得 − 2 y + 4 = 0 -2y + 4 = 0 2y+4=0,解得 y = 2 y = 2 y=2

例题2:已知直线过点 ( 1 , 2 ) (1, 2) (1,2) ( − 2 , 4 ) (-2, 4) (2,4),求该直线的一般方程。

解答

  • 首先,使用两点式方程 y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} y2y1yy1=x2x1xx1,代入点 ( 1 , 2 ) (1, 2) (1,2) ( − 2 , 4 ) (-2, 4) (2,4),得到 y − 2 4 − 2 = x − 1 − 2 − 1 \frac{y - 2}{4 - 2} = \frac{x - 1}{-2 - 1} 42y2=21x1
  • 化简得 y − 2 2 = − x − 1 3 \frac{y - 2}{2} = -\frac{x - 1}{3} 2y2=3x1,进一步交叉相乘得 3 ( y − 2 ) = − 2 ( x − 1 ) 3(y - 2) = -2(x - 1) 3(y2)=2(x1)
  • 展开并整理得 3 y − 6 = − 2 x + 2 3y - 6 = -2x + 2 3y6=2x+2,最后得到一般方程 2 x + 3 y − 8 = 0 2x + 3y - 8 = 0 2x+3y8=0

直线一般方程的系数有一个或两个为零的直线

在直线的一般方程 A x + B y + C = 0 Ax + By + C = 0 Ax+By+C=0 中,系数 A A A B B B C C C 可以取任意实数,但 A A A B B B 不能同时为零(否则方程将不表示一条直线)。现在我们来讨论当 A A A B B B C C C 有一个或两个为零时,直线的一般方程所表示的直线特性。

以下内容由文心一言自动生成

  1. A = 0 A = 0 A=0 B ≠ 0 B \neq 0 B=0: 方程简化为 B y + C = 0 By + C = 0 By+C=0 y = − C B y = -\frac{C}{B} y=BC。这是一条水平线,与y轴平行(或重合,如果 C = 0 C = 0 C=0 的话),斜率为0。

  2. A ≠ 0 A \neq 0 A=0 B = 0 B = 0 B=0: 方程简化为 A x + C = 0 Ax + C = 0 Ax+C=0 x = − C A x = -\frac{C}{A} x=AC。这是一条垂直线,与x轴平行(或重合,如果 C = 0 C = 0 C=0 的话),斜率不存在。

  3. C = 0 C = 0 C=0: 方程简化为 A x + B y = 0 Ax + By = 0 Ax+By=0。这是一条过原点的直线(除非 A = B = 0 A = B = 0 A=B=0,但这种情况已被排除)。这条直线的斜率 m = − A B m = -\frac{A}{B} m=BA(如果 B ≠ 0 B \neq 0 B=0)。

  4. A = 0 A = 0 A=0 B = 0 B = 0 B=0 C ≠ 0 C \neq 0 C=0: 这种情况实际上是不可能的,因为方程 0 x + 0 y + C = 0 0x + 0y + C = 0 0x+0y+C=0(其中 C ≠ 0 C \neq 0 C=0)是一个矛盾方程,没有解,因此不表示任何直线。

  5. 特殊情况: A = B = 0 A = B = 0 A=B=0 C = 0 C = 0 C=0: 方程简化为 0 x + 0 y + 0 = 0 0x + 0y + 0 = 0 0x+0y+0=0。这同样是一个无效方程,因为它对所有的 x x x y y y 都成立,因此不表示任何特定的直线或点。

综上所述,当直线一般方程的系数有一个或两个为零时,直线可能是水平线、垂直线、过原点的直线,或者方程是无效的(不表示任何直线或点)。在实际应用中,我们通常会避免使用无效的方程,并根据具体情况选择最合适的直线表示方式。

参考文献

1.《高等数学讲义》
2.文心一言

  • 8
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值