实变函数精解【19】

Levi定理

Levi定理,也称为勒贝格单调收敛定理(monotone convergence theorem),是实变函数领域中的一个重要定理。该定理主要关注于渐升的非负可测函数列的极限与积分之间的关系。以下是关于Levi定理的详细解析:

一、定理内容

设{fn(x)}是可测集E上的一列非负可测函数,且满足以下条件:
1. f n ( x ) ≤ f n + 1 ( x ) ( n = 1 , 2 , . . . ),即函数列是单调递增的。 2. f n ( x ) 在 E 上几乎处处收敛于某个函数 f ( x ) 。 1. fn(x) ≤ fn+1(x)(n = 1, 2, ...),即函数列是单调递增的。\\ 2. fn(x)在E上几乎处处收敛于某个函数f(x)。 1.fn(x)fn+1(x)n=1,2,...),即函数列是单调递增的。2.fn(x)E上几乎处处收敛于某个函数f(x)
则根据Levi定理,有:

lim ⁡ n → ∞ ∫ E f n ( x )   d m = ∫ E f ( x )   d m \lim_{{n \to \infty}} \int_E f_n(x) \, dm = \int_E f(x) \, dm nlimEfn(x)dm=Ef(x)dm

其中,dm表示在可测集E上的勒贝格测度。

二、定理意义

Levi定理的意义在于它允许我们在一定条件下将极限运算与积分运算交换顺序,这对于处理复杂的积分问题非常有用。特别地,当函数列是单调递增且非负时,我们可以先求极限再积分,或者先积分再求极限,两者结果相同。

三、应用领域

Levi定理在实变函数、测度论、概率论等领域都有广泛的应用。它不仅是勒贝格积分理论中的一个基本定理,也是处理函数列极限与积分关系的重要工具。

四、证明思路

证明Levi定理通常涉及以下几个步骤:

  1. 构造逼近函数:通过非负简单函数列来逼近原函数列{fn(x)},这些简单函数列同样保持单调递增的性质。
  2. 应用单调收敛性:利用单调收敛定理(对于简单函数列)来证明逼近函数列的积分极限等于其极限函数的积分。
  3. 极限运算:通过一系列极限运算,将逼近函数列的积分极限与原函数列的积分极限联系起来。
  4. 得出结论:由于逼近函数列的积分极限等于原函数列的积分极限,且逼近函数列的极限函数等于原函数列的极限函数,因此可以得出Levi定理的结论。

五、相关定理

在实变函数和测度论中,除了Levi定理外,还有Fatou引理和Lebesgue控制收敛定理等重要的极限定理。这些定理共同构成了处理函数列极限与积分关系的基本理论框架。

六、总结

Levi定理是实变函数中的一个重要定理,它允许我们在一定条件下交换极限运算与积分运算的顺序。该定理在实变函数、测度论、概率论等领域都有广泛的应用,是处理复杂积分问题的重要工具。

Lebesgue可积函数

性质

  1. 线性性

    • 若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)在区间 I I I上都是Lebesgue可积的,则它们的线性组合 a f ( x ) + b g ( x ) af(x) + bg(x) af(x)+bg(x)(其中 a , b a, b a,b为常数)在 I I I上也是Lebesgue可积的,且积分满足 ∫ I ( a f ( x ) + b g ( x ) ) d x = a ∫ I f ( x ) d x + b ∫ I g ( x ) d x \int_I (af(x) + bg(x)) dx = a\int_I f(x) dx + b\int_I g(x) dx I(af(x)+bg(x))dx=aIf(x)dx+bIg(x)dx
  2. 单调性

    • 若函数 f ( x ) f(x) f(x)在区间 I I I上单调,则它是Lebesgue可积的。这是因为单调函数的不连续点至多可数,而可数集是零测集,不影响积分值。
  3. 有界性

    • 有界函数在有限区间上不一定是Lebesgue可积的,但如果它的不连续点构成的集合是零测集(即有界且几乎处处连续),则它是Lebesgue可积的。
  4. 绝对可积性

    • 若函数 f ( x ) f(x) f(x)在区间 I I I上是Lebesgue可积的,则其绝对值函数 ∣ f ( x ) ∣ |f(x)| f(x) I I I上也是Lebesgue可积的,且积分满足 ∫ I ∣ f ( x ) ∣ d x ≥ ∣ ∫ I f ( x ) d x ∣ \int_I |f(x)| dx \geq \left| \int_I f(x) dx \right| If(x)dx If(x)dx
  5. 积分区间的可加性

    • 若函数 f ( x ) f(x) f(x)在区间 I 1 I_1 I1 I 2 I_2 I2上都是Lebesgue可积的,且 I 1 ∩ I 2 I_1 \cap I_2 I1I2为空集或仅包含一个端点,则它在区间 I 1 ∪ I 2 I_1 \cup I_2 I1I2上也是Lebesgue可积的,并且积分值满足 ∫ I 1 ∪ I 2 f ( x ) d x = ∫ I 1 f ( x ) d x + ∫ I 2 f ( x ) d x \int_{I_1 \cup I_2} f(x) dx = \int_{I_1} f(x) dx + \int_{I_2} f(x) dx I1I2f(x)dx=I1f(x)dx+I2f(x)dx
  6. 积分与极限的交换性(Levi定理/勒贝格单调收敛定理):

    • 若函数列 { f n ( x ) } \{f_n(x)\} {fn(x)}在区间 I I I上单调递增(或递减),且几乎处处收敛于函数 f ( x ) f(x) f(x),则函数列和函数 f ( x ) f(x) f(x) I I I上都是Lebesgue可积的,且积分满足 lim ⁡ n → ∞ ∫ I f n ( x ) d x = ∫ I f ( x ) d x \lim_{n \to \infty} \int_I f_n(x) dx = \int_I f(x) dx limnIfn(x)dx=If(x)dx
  7. 绝对连续性

    • 对于Lebesgue可积函数 f ( x ) f(x) f(x),当积分区间 I I I的长度趋于0时(即区间收缩到一点),积分的绝对值也趋于0,即 lim ⁡ ∣ I ∣ → 0 ∣ ∫ I f ( x ) d x ∣ = 0 \lim_{|I| \to 0} \left| \int_I f(x) dx \right| = 0 limI0 If(x)dx =0
  8. 与Riemann积分的关系

    • 若函数 f ( x ) f(x) f(x)在区间 I I I上是Riemann可积的,则它一定是Lebesgue可积的,并且两种积分的值相等。但反之不一定成立,即Lebesgue可积的函数不一定Riemann可积。这是因为Lebesgue积分对函数的不连续性要求更低,只要求不连续点构成零测集。
  9. 积分的中值定理(在某些条件下成立):

    • 对于在区间 I I I上连续或几乎处处连续的Lebesgue可积函数 f ( x ) f(x) f(x),存在至少一个点 x 0 ∈ I x_0 \in I x0I,使得函数在该点的值等于积分平均值,即 f ( x 0 ) = 1 ∣ I ∣ ∫ I f ( x ) d x f(x_0) = \frac{1}{|I|} \int_I f(x) dx f(x0)=I1If(x)dx。但需要注意的是,这个性质并不总是成立,特别是当函数在区间上无界或具有其他特殊性质时。
  10. 积分的比较定理

    • 若在区间 I I I上,函数 f ( x ) ≤ g ( x ) f(x) \leq g(x) f(x)g(x)几乎处处成立,且 f ( x ) f(x) f(x) g ( x ) g(x) g(x)都是Lebesgue可积的,则 ∫ I f ( x ) d x ≤ ∫ I g ( x ) d x \int_I f(x) dx \leq \int_I g(x) dx If(x)dxIg(x)dx
  11. 积分的可数可加性(在有限和下成立):

    • 对于有限个Lebesgue可积函数的和,其积分等于各函数积分之和。即若 f 1 ( x ) , f 2 ( x ) , … , f n ( x ) f_1(x), f_2(x), \ldots, f_n(x) f1(x),f2(x),,fn(x)在区间 I I I上都是Lebesgue可积的,则 ∫ I ( ∑ i = 1 n f i ( x ) ) d x = ∑ i = 1 n ∫ I f i ( x ) d x \int_I \left( \sum_{i=1}^{n} f_i(x) \right) dx = \sum_{i=1}^{n} \int_I f_i(x) dx I(i=1nfi(x))dx=i=1nIfi(x)dx。但需要注意的是,对于可数无穷多个函数,这个性质一般不成立,除非满足特定的条件(如函数列单调且逐点收敛)。

综上所述,Lebesgue可积函数具有线性性、单调性、有界性(在特定条件下)、绝对可积性、积分区间的可加性、积分与极限的交换性(在特定条件下)、绝对连续性、与Riemann积分的关系、积分的中值定理(在特定条件下)、积分的比较定理以及积分的可数可加性(在有限和下)。这些性质共同构成了Lebesgue积分理论的基础。

依定义成立的性质

  • f ( x ) 在 E 上是 L e b e s g u e 可积,则: 1. m ( E ) = 0 ,则 E 上的非负可测函数 f ( x ) 均可积。 ∫ E f ( x ) d x = 0 2. f ( x ) 是 E 上非负可测函数, A 是 E 上的可测子集。 ∫ A f ( x ) d x = ∫ E f ( x ) χ A ( x ) d d x ∫ A f ( x ) d x = s u p { ∫ A h ( x ) d x ∣ h ( x ) 是 A 上非负简单可测函数, h ( x ) ≤ f ( x ) } = s u p { ∫ A h ( x ) d x ∣ h ( x ) 是 E 上非负简单可测函数, h ( x ) ≤ f ( x ) χ A ( x ) } = s u p { ∫ E h ( x ) d x ∣ h ( x ) 是 E 上非负简单可测函数, h ( x ) ≤ f ( x ) χ A ( x } = ∫ E f ( x ) χ A ( x ) d x ∫ E f ( x ) d x = s u p { ∫ E h ( x ) d x ∣ h ( x ) 是 E 上的非负简单可测函数,且 h ( x ) ≤ f ( x ) } f(x)在E上是Lebesgue可积,则: \\1.m(E)=0,则E上的非负可测函数f(x)均可积。\int_Ef(x)dx=0 \\2.f(x)是E上非负可测函数,A是E上的可测子集。\\\int_Af(x)dx=\int_Ef(x)\chi_A(x)ddx \\\int_Af(x)dx \\=sup\{\int_Ah(x)dx|h(x)是A上非负简单可测函数,h(x)\le f(x)\} \\=sup\{\int_Ah(x)dx|h(x)是E上非负简单可测函数,h(x)\le f(x)\chi_A(x)\} \\=sup\{\int_Eh(x)dx|h(x)是E上非负简单可测函数,h(x)\le f(x)\chi_A(x\} \\=\int_Ef(x)\chi_A(x)dx \\\int_Ef(x)dx=sup\{\int_Eh(x)dx|h(x)是E 上的非负简单可测函数,且h(x)\le f(x)\} f(x)E上是Lebesgue可积,则:1.m(E)=0,则E上的非负可测函数f(x)均可积。Ef(x)dx=02.f(x)E上非负可测函数,AE上的可测子集。Af(x)dx=Ef(x)χA(x)ddxAf(x)dx=sup{Ah(x)dxh(x)A上非负简单可测函数,h(x)f(x)}=sup{Ah(x)dxh(x)E上非负简单可测函数,h(x)f(x)χA(x)}=sup{Eh(x)dxh(x)E上非负简单可测函数,h(x)f(x)χA(x}=Ef(x)χA(x)dxEf(x)dx=sup{Eh(x)dxh(x)E上的非负简单可测函数,且h(x)f(x)}

实变函数中有界可测函数的可积性

在实变函数中,讨论有界可测函数的可积性时,我们主要关注的是勒贝格积分。勒贝格积分是一种比黎曼积分更广泛的积分,它能够处理具有更多不连续性的函数。以下是有界可测函数在勒贝格积分意义下可积的条件:

  1. 有界性:函数 f ( x ) f(x) f(x)在定义域上是有界的,即存在一个正数 M M M,使得对于定义域内的所有 x x x,都有 ∣ f ( x ) ∣ ≤ M |f(x)| \leq M f(x)M

  2. 可测性:函数 f ( x ) f(x) f(x)是可测的,这意味着对于任意实数 a a a,集合 { x ∣ f ( x ) > a } \{x | f(x) > a\} {xf(x)>a}是可测集。在勒贝格积分的框架下,这通常是通过假设函数定义在一个可测集上,并且函数值是可测的(即,对于每个实数 a a a,函数值大于 a a a x x x的集合是可测的)来实现的。

  3. 定义域的可测性:函数 f ( x ) f(x) f(x)的定义域是一个可测集,且其测度是有限的。这通常意味着我们在一个有限区间、有限个不相交区间的并集、或者更一般的可测集上考虑函数。

  4. 绝对可积性:在勒贝格积分的意义下,一个函数是可积的,当且仅当它的绝对值函数是可积的。这等价于说,函数 f ( x ) f(x) f(x)的勒贝格积分 ∫ ∣ f ( x ) ∣ d μ \int |f(x)| d\mu f(x)dμ是有限的,其中 μ \mu μ是定义域上的测度。

综合以上条件,我们可以得出结论:一个定义在有限测度可测集上的有界可测函数,在勒贝格积分的意义下是可积的,当且仅当它的绝对值函数是可积的。这通常是通过证明函数的绝对值函数的积分是有限的来实现的。

需要注意的是,与黎曼积分不同,勒贝格积分不要求函数在不连续点处具有良好的性质(如不连续点构成零测集)。勒贝格积分能够处理具有任意多不连续点的函数,只要这些不连续点不影响积分的有限性。

测度空间上研究可测函数的收敛性

是一个深入且重要的课题。为了清晰地阐述这一主题,我们需要从几个关键方面来探讨:可测函数的基本概念、不同类型的收敛性(如依测度收敛、逐点收敛、一致收敛等),以及它们之间的关系和性质。

测度空间的定义

一、定义

测度空间一般记作 ( X , F , μ ) (X, \mathcal{F}, \mu) (X,F,μ),其中:

  • X X X样本空间(sample space),它是一个集合,在统计学中, X X X中的每一个元素都代表一个可能的结果(outcome)。样本空间可以为任意形式的集合,例如表示硬币的正反面、骰子的六个面的数字、0到1间的任意一个数字等。
  • F \mathcal{F} F X X X上的一个σ代数(σ-field),它是 X X X的子集组成的集合,满足特定的性质:包含全集 X X X和空集 ∅ \varnothing ;对补集运算封闭;对可数并运算封闭。σ代数中的元素称为可测集。
  • μ \mu μ为定义在 F \mathcal{F} F上的测度(measure),它是一个函数,满足非负性、规范性和完全可加性,为每个可测集分配一个非负实数(或无穷大),表示该集合的“大小”或“度量”。具体来说,对任意的 A ∈ F A \in \mathcal{F} AF,有 μ ( A ) ≥ 0 \mu(A) \geq 0 μ(A)0(非负性); μ ( ∅ ) = 0 \mu(\varnothing) = 0 μ()=0(规范性);对于任意一列两两不交的集合 A i {A_i} Ai(其中 A i ∈ F A_i \in \mathcal{F} AiF),有 μ ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) \mu(\bigcup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mu(A_i) μ(i=1Ai)=i=1μ(Ai)(完全可加性)。
二、解释
  • 样本空间:是研究对象所有可能结果的集合。
  • σ代数:是样本空间上所有可测集的集合,它包含了足够多的子集以支持测度的定义。σ代数的性质确保了测度的定义是合理和有用的。
  • 测度:是用来测量集合“大小”或“度量”的函数。在概率论中,当测度满足 μ ( X ) = 1 \mu(X) = 1 μ(X)=1时,称该测度为概率测度,此时测度空间称为概率空间。

测度空间详细阐述:

一、定义概述

测度空间是一个三元组(X, Σ, μ),其中:

  • X是一个集合,通常称为样本空间或基本空间,它包含了研究过程中所有可能的结果或元素。
  • Σ是X的一个子集组成的σ代数(或-域),它是X上某些特定子集的集合,满足特定的性质(如包含空集、对补集和可数并集封闭)。Σ中的元素称为可测集。
  • μ是定义在Σ上的一个非负测度函数,它用于为Σ中的每个可测集分配一个非负实数(或无穷大),表示该集合的“大小”或“度量”。
二、关键概念解析
  1. 样本空间X

    • 样本空间是包含所有可能结果的集合。在统计学和概率论中,这些结果可以是实验或观察的可能输出。
  2. σ代数Σ

    • σ代数是样本空间X的子集的一个集合,满足以下三个条件:
      • 包含空集和样本空间X本身。
      • 对补集运算封闭,即如果A∈Σ,那么X\A(A的补集)也属于Σ。
      • 对可数并集运算封闭,即如果{An}n∈N是一列属于Σ的集合,那么它们的并集∪n∈NAn也属于Σ。
    • σ代数中的元素称为可测集,这些集合是测度函数可以定义在其上的对象。
  3. 测度μ

    • 测度是一个函数μ: Σ → [0, +∞],它将σ代数Σ中的每个可测集A映射到一个非负实数μ(A)(或无穷大),表示该集合的“大小”或“度量”。
    • 测度函数满足非负性、规范性和完全可加性:
      • 非负性:对任意的A∈Σ,有μ(A) ≥ 0。
      • 规范性:空集的测度为0,即μ(∅) = 0。
      • 完全可加性:对任意一列两两不交的集合{An}n∈N ⊆ Σ,有μ(∪n∈NAn) = ∑n∈N μ(An)。
三、特殊类型
  • 概率空间:当测度μ满足μ(X) = 1时,称(X, Σ, μ)为概率空间,此时μ称为概率测度。
  • σ有限测度空间:如果对于Σ中的每个集合A,都存在一个可测集序列{An}n∈N,使得A ⊆ ∪n∈NAn且μ(An) < +∞对所有的n都成立,则称μ是Σ上的σ有限测度,(X, Σ, μ)称为σ有限测度空间。
四、应用实例

测度空间是测度论中的基本概念,广泛应用于概率论、统计学、实分析等领域。例如,勒贝格测度空间(R, Σ, λ)是一个重要的测度空间,其中R是实数集,Σ是勒贝格可测集类,λ是勒贝格测度,它赋予欧几里得空间的子集一个长度、面积或体积的标准方法。

综上所述,测度空间是定义了测度的可测空间,它是一个三元组 ( X , F , μ ) (X, \mathcal{F}, \mu) (X,F,μ),其中 X X X为样本空间, F \mathcal{F} F X X X上的σ代数, μ \mu μ为定义在 F \mathcal{F} F上的测度。

可测函数的基本概念

在测度空间 ( X , F , μ ) (X, \mathcal{F}, \mu) (X,F,μ)中, F \mathcal{F} F X X X上的 σ \sigma σ-代数, μ \mu μ F \mathcal{F} F上的测度。一个函数 f : X → R f: X \rightarrow \mathbb{R} f:XR(或 C \mathbb{C} C)被称为可测的,如果对于任意实数 a a a,集合 { x ∈ X : f ( x ) > a } \{x \in X: f(x) > a\} {xX:f(x)>a}都属于 F \mathcal{F} F

不同类型的收敛性
  1. 逐点收敛

    • 定义:对于可测函数序列 { f n } \{f_n\} {fn}和函数 f f f,如果对于几乎所有 x ∈ X x \in X xX,都有 lim ⁡ n → ∞ f n ( x ) = f ( x ) \lim_{n \rightarrow \infty} f_n(x) = f(x) limnfn(x)=f(x),则称 { f n } \{f_n\} {fn}逐点收敛于 f f f
  2. 一致收敛

    • 定义:如果对于任意 ϵ > 0 \epsilon > 0 ϵ>0,都存在一个正整数 N N N,使得当 n ≥ N n \geq N nN时,对于所有 x ∈ X x \in X xX,都有 ∣ f n ( x ) − f ( x ) ∣ < ϵ |f_n(x) - f(x)| < \epsilon fn(x)f(x)<ϵ,则称 { f n } \{f_n\} {fn}一致收敛于 f f f
  3. 依测度收敛

    • 定义:对于任意 ϵ > 0 \epsilon > 0 ϵ>0,如果存在一个正整数 N N N,使得当 n ≥ N n \geq N nN时,有 μ ( { x ∈ X : ∣ f n ( x ) − f ( x ) ∣ ≥ ϵ } ) < ϵ \mu(\{x \in X: |f_n(x) - f(x)| \geq \epsilon\}) < \epsilon μ({xX:fn(x)f(x)ϵ})<ϵ,则称 { f n } \{f_n\} {fn}依测度收敛于 f f f
收敛性之间的关系
  1. 逐点收敛与一致收敛

    • 一致收敛必然导致逐点收敛,但逐点收敛不一定能推出一致收敛。一致收敛要求收敛的速度在所有 x ∈ X x \in X xX上都是一致的,而逐点收敛只要求对每个 x x x都存在极限。
  2. 逐点收敛与依测度收敛

    • 逐点收敛不一定能推出依测度收敛。例如,在某些情况下,即使函数序列逐点收敛,但收敛的速度可能非常慢,导致在测度上不满足依测度收敛的条件。
    • 依测度收敛也不一定意味着逐点收敛。但是,在某些特定的条件下(如函数序列是单调的),依测度收敛可以推出逐点收敛。
  3. 一致收敛与依测度收敛

    • 一致收敛通常比依测度收敛更强。在有限测度空间上,一致收敛通常意味着依测度收敛。但在无限测度空间上,这种关系可能不成立。
性质与定理
  • Egoroff定理:在有限测度空间上,如果 { f n } \{f_n\} {fn}依测度收敛于 f f f,则存在一个子集 E ⊆ X E \subseteq X EX,使得 μ ( E ) \mu(E) μ(E)可以任意小,并且 { f n } \{f_n\} {fn} X ∖ E X \setminus E XE上一致收敛于 f f f

  • Riesz定理:如果 { f n } \{f_n\} {fn}是可分的、单调增加(或减少)的可测函数序列,并且逐点收敛于函数 f f f,则 { f n } \{f_n\} {fn}依测度收敛于 f f f

五、总结

在测度空间上研究可测函数的收敛性是一个复杂且有趣的领域。不同类型的收敛性之间有着紧密的联系和区别。理解这些收敛性的定义、性质以及它们之间的关系对于深入掌握测度论和实分析是非常重要的。

参考文献

1.《实变函数与泛函分析》
2. 文心一言
3. chatgpt

使用优化算法,以优化VMD算法的惩罚因子惩罚因子 (α) 和分解层数 (K)。 1、将量子粒子群优化(QPSO)算法与变分模态分解(VMD)算法结合 VMD算法背景: VMD算法是一种自适应信号分解算法,主要用于分解信号为不同频率带宽的模态。 VMD的关键参数包括: 惩罚因子 α:控制带宽的限制。 分解层数 K:决定分解出的模态数。 QPSO算法背景: 量子粒子群优化(QPSO)是一种基于粒子群优化(PSO)的一种改进算法,通过量子行为模型增强全局搜索能力。 QPSO通过粒子的量子行为使其在搜索空间中不受位置限制,从而提高算法的收敛速度与全局优化能力。 任务: 使用QPSO优化VMD中的惩罚因子 α 和分解层数 K,以获得信号分解的最佳效果。 计划: 定义适应度函数:适应度函数根据VMD分解的效果来定义,通常使用重构信号的误差(例如均方误差、交叉熵等)来衡量分解的质量。 初始化QPSO粒子:定义粒子的位置和速度,表示 α 和 K 两个参数。初始化时需要在一个合理的范围内为每个粒子分配初始位置。 执行VMD分解:对每一组 α 和 K 参数,运行VMD算法分解信号。 更新QPSO粒子:使用QPSO算法更新粒子的状态,根据适应度函数调整粒子的搜索方向和位置。 迭代求解:重复QPSO的粒子更新步骤,直到满足终止条件(如适应度函数达到设定阈值,或最大迭代次数)。 输出优化结果:最终,QPSO算法会返回一个优化的 α 和 K,从而使VMD分解效果最佳。 2、将极光粒子(PLO)算法与变分模态分解(VMD)算法结合 PLO的优点与适用性 强大的全局搜索能力:PLO通过模拟极光粒子的运动,能够更高效地探索复杂的多峰优化问题,避免陷入局部最优。 鲁棒性强:PLO在面对高维、多模态问题时有较好的适应性,因此适合海上风电时间序列这种非线性、多噪声的数据。 应用场景:PLO适合用于优化VMD参数(α 和 K),并将其用于风电时间序列的预测任务。 进一步优化的建议 a. 实现更细致的PLO更新策略,优化极光粒子的运动模型。 b. 将PLO优化后的VMD应用于真实的海上风电数据,结合LSTM或XGBoost等模型进行风电功率预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值