物理学基础精解【46】

平面方程

平面方程通常形式

1. 一般式方程

平面的一般式方程为:

A x + B y + C z + D = 0 Ax + By + Cz + D = 0 Ax+By+Cz+D=0

其中, A , B , C A, B, C A,B,C 是平面法向量的分量, D D D 是常数。这个方程表示所有满足该等式的点 ( x , y , z ) (x, y, z) (x,y,z) 的集合构成了一个平面。

2. 点法式方程

如果已知平面上的一点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0, y_0, z_0) P0(x0,y0,z0) 和平面的法向量 n ⃗ = ( A , B , C ) \vec{n} = (A, B, C) n =(A,B,C),则平面的点法式方程为:

A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 A(xx0)+B(yy0)+C(zz0)=0

这个方程描述了通过点 P 0 P_0 P0 且与法向量 n ⃗ \vec{n} n 垂直的平面。

3. 截距式方程

如果平面与 x , y , z x, y, z x,y,z 轴分别交于点 A ( a , 0 , 0 ) , B ( 0 , b , 0 ) , C ( 0 , 0 , c ) A(a, 0, 0), B(0, b, 0), C(0, 0, c) A(a,0,0),B(0,b,0),C(0,0,c),则平面的截距式方程为:

x a + y b + z c = 1 \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 ax+by+cz=1

这个方程表示平面在三个坐标轴上的截距分别为 a , b , c a, b, c a,b,c

平面的性质

  1. 法向量:平面的法向量是与平面内任意两个非共线向量都垂直的向量。它决定了平面的方向。

  2. 平面内的向量:如果两个向量的起点和终点都在平面上,则这两个向量的和、差以及数乘结果也都在平面上。

  3. 平面的平行与垂直

    • 两个平面平行当且仅当它们的法向量平行(即法向量之间存在非零倍数关系)。
    • 两个平面垂直当且仅当它们的法向量垂直(即法向量的点积为零)。
  4. 平面与直线的位置关系

    • 直线与平面平行:直线与平面没有交点,且直线的方向向量与平面的法向量垂直。
    • 直线在平面内:直线的所有点都在平面上。
    • 直线与平面相交:直线与平面有一个且仅有一个交点。
  5. 点到平面的距离:点 P ( x 1 , y 1 , z 1 ) P(x_1, y_1, z_1) P(x1,y1,z1) 到平面 A x + B y + C z + D = 0 Ax + By + Cz + D = 0 Ax+By+Cz+D=0 的距离 d d d 可以用以下公式计算:

d = ∣ A x 1 + B y 1 + C z 1 + D ∣ A 2 + B 2 + C 2 d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2 Ax1+By1+Cz1+D

这个公式给出了点到平面的一种度量方式,常用于解决实际问题中的距离计算。

平面在三维坐标系中的特殊位置

除了之前提到的与坐标轴平行、垂直、通过原点或相交于特定点外,还有一些其他值得注意的特殊情况:

1. 通过坐标轴

  • 通过x轴:如果平面方程中y和z的系数都为零,则该平面将包含x轴上的所有点,即与x轴重合或平行于x轴。
  • 通过y轴:类似地,如果平面方程中x和z的系数都为零,则该平面将包含y轴上的所有点,即与y轴重合或平行于y轴。
  • 通过z轴:如果平面方程中x和y的系数都为零,则该平面将包含z轴上的所有点,即与z轴重合或平行于z轴。

2. 垂直于坐标平面

  • 垂直于xy平面:当平面的法向量与z轴平行(即法向量的z分量不为零,x和y分量为零)时,该平面将垂直于xy平面。
  • 垂直于yz平面:当平面的法向量与x轴平行(即法向量的x分量不为零,y和z分量为零)时,该平面将垂直于yz平面。
  • 垂直于zx平面:当平面的法向量与y轴平行(即法向量的y分量不为零,x和z分量为零)时,该平面将垂直于zx平面。

3. 平行于坐标平面

  • 平行于xy平面:当平面的法向量与z轴平行时,该平面将平行于xy平面。
  • 平行于yz平面:当平面的法向量与x轴平行时,该平面将平行于yz平面。
  • 平行于zx平面:当平面的法向量与y轴平行时,该平面将平行于zx平面。

4. 包含坐标轴上的特定线段

除了通过整个坐标轴外,平面还可以包含坐标轴上的特定线段。例如,一个平面可能包含x轴从点(a,0,0)到点(b,0,0)的线段,而不包含x轴上的其他点。

5. 与坐标轴成特定角度

在某些情况下,平面可能与坐标轴成特定的非垂直或非平行角度。这种平面的法向量与坐标轴既不平行也不垂直,而是形成一定的夹角。

6. 特定几何形状的平面

在三维空间中,平面还可以具有特定的几何形状,如圆形、椭圆形或其他曲线形状。这些形状的平面通常与坐标轴形成复杂的关系,并且可以通过参数方程或隐函数来描述。

综上所述,平面在三维坐标系中的特殊位置多种多样,包括通过坐标轴、垂直于坐标平面、平行于坐标平面、包含坐标轴上的特定线段、与坐标轴成特定角度以及具有特定几何形状的平面等。这些特殊位置在解析几何、计算机图形学、物理学和工程学等领域中具有重要的应用价值。

通过原点的平面

是指平面方程中常数项 D = 0 D=0 D=0的平面,或者可以理解为平面上至少包含原点 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)作为它的一个点。在三维坐标系中,这样的平面具有一些特殊的性质。

方程形式

通过原点的平面方程可以表示为:

A x + B y + C z = 0 Ax + By + Cz = 0 Ax+By+Cz=0

其中, A , B , C A, B, C A,B,C是平面的法向量 n ⃗ \vec{n} n 的分量,且不同时为零。因为平面通过原点,所以常数项 D D D为零。

性质

  1. 法向量:平面的法向量 n ⃗ = ( A , B , C ) \vec{n} = (A, B, C) n =(A,B,C)决定了平面的方向。由于平面通过原点,法向量也原点出发,指向平面的“上方”或“下方”(取决于法向量的方向)。

  2. 对称性:通过原点的平面具有关于原点的对称性。这意味着,如果点 ( x , y , z ) (x, y, z) (x,y,z)在平面上,那么点 ( − x , − y , − z ) (-x, -y, -z) (x,y,z)也在平面上。

  3. 与坐标轴的关系

    • 平面可能与一个、两个或三个坐标轴相交于原点。
    • 如果平面的法向量与某个坐标轴平行(即法向量的某个分量为零),则平面与该坐标轴垂直,并且包含该坐标轴上的所有点(但不仅仅是原点)。
    • 如果平面的法向量与所有坐标轴都不平行,则平面与所有坐标轴都相交,且交点仅为原点。
  4. 点到平面的距离:对于平面上的任意点(包括原点),其到平面的距离都为零。对于平面外的点,可以使用点到平面距离的公式来计算其到平面的距离。

  5. 平面内的向量:平面内的任意两个点的连线向量都在平面内。这些向量可以与平面的法向量进行点积运算,结果为零,因为它们是垂直的。

示例

  • x + y + z = 0 x + y + z = 0 x+y+z=0 是一个通过原点的平面方程。它的法向量是 ( 1 , 1 , 1 ) (1, 1, 1) (1,1,1),表示平面与所有坐标轴都不平行。
  • x = 0 x = 0 x=0 y = 0 y = 0 y=0 z = 0 z = 0 z=0 分别表示与y-z平面、x-z平面和x-y平面重合的平面,它们都通过原点。

通过原点的平面在解析几何、物理学和工程学等领域中有广泛的应用,如描述物体的运动平面、力的平衡平面等。

平行于Z轴的平面

是指其法向量与Z轴平行(即法向量的z分量不为零,而x和y分量为零)的平面。这样的平面在三维坐标系中具有一些特定的性质。

方程形式

平行于Z轴的平面方程可以表示为:

A x + B y = D Ax + By = D Ax+By=D

其中, A A A B B B 是常数,且不同时为零(如果同时为零,则方程退化为一个常数,不表示平面), D D D 是另一个常数。注意,这里没有z项,因为平面的法向量与Z轴平行,意味着平面在Z轴方向上没有变化。

然而,更常见的表示方式是使用截距式或点法式。对于平行于Z轴的平面,其截距式方程可以表示为:

x a + y b = 1 \frac{x}{a} + \frac{y}{b} = 1 ax+by=1

其中, a a a b b b 是平面与X轴和Y轴的截距。

点法式方程则需要一个平面上的点和法向量。由于法向量与Z轴平行,可以选择法向量为 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)(或任何z分量不为零的向量,但通常选择单位向量以简化计算)。然后,选择一个平面上的点,例如 ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0),则点法式方程为:

0 ( x − x 0 ) + 0 ( y − y 0 ) + 1 ( z − z 0 ) = 0 0(x - x_0) + 0(y - y_0) + 1(z - z_0) = 0 0(xx0)+0(yy0)+1(zz0)=0

简化后得到:

z − z 0 = 0 z - z_0 = 0 zz0=0

或者更一般地写作:

z = 常数 z = \text{常数} z=常数

性质

  1. 法向量:平行于Z轴的平面的法向量与Z轴平行,通常可以选择为 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1) ( 0 , 0 , − 1 ) (0, 0, -1) (0,0,1)

  2. 与Z轴的关系:由于平面的法向量与Z轴平行,平面在Z轴方向上没有变化,即平面上的所有点的z坐标都相同。

  3. 与X-Y平面的关系:平行于Z轴的平面可以看作是X-Y平面在Z轴方向上的平移。

  4. 平面内的向量:平面内的任意两个点的连线向量都在平面内,且这些向量的z分量都相同。

  5. 点到平面的距离:对于平行于Z轴的平面,点到平面的距离可以通过计算点在X-Y平面上的投影到平面在X-Y平面上的投影的距离来得到,然后乘以 cos ⁡ ( θ ) \cos(\theta) cos(θ),其中 θ \theta θ是平面法向量与Z轴之间的夹角(对于平行于Z轴的平面, θ = 0 \theta = 0 θ=0 θ = 18 0 ∘ \theta = 180^\circ θ=180,但通常选择 θ = 0 ∘ \theta = 0^\circ θ=0,因为距离是非负的)。然而,由于平面平行于Z轴,这个距离实际上就是点在X-Y平面上到平面与X-Y平面交线的距离。

示例

  • z = 5 z = 5 z=5 是一个平行于Z轴的平面方程。它表示所有z坐标为5的点构成的平面。
  • x 3 + y 4 = 1 \frac{x}{3} + \frac{y}{4} = 1 3x+4y=1 也是一个平行于Z轴的平面方程,但它同时给出了平面与X轴和Y轴的截距(分别是3和4)。

平行于Z轴的平面在三维空间中非常常见,特别是在描述物体的运动、位置或形状时。例如,在机器人学中,机器人的工作平面可能就是一个平行于Z轴的平面;在建筑设计中,楼层平面也通常是平行于Z轴的。

平行于某面的平面

是指两个平面在三维空间中保持一定的距离,且它们的法向量平行(即方向相同或相反)。如果两个平面平行,那么它们之间不会有交点,且任意一点到一个平面的距离与到另一个平面的距离相等。

性质

  1. 法向量平行:两个平行平面的法向量必须平行。这意味着它们的方向相同或相反,且大小可以不同但通常选择为单位向量以简化计算。

  2. 没有交点:两个平行平面在三维空间中不会相交,因此它们之间没有公共点。

  3. 等距离性:对于任意一点(不在两个平面上),它到两个平行平面的距离是相等的。这个性质可以用于测量两个平行平面之间的距离。

  4. 平移关系:一个平面可以通过沿其法向量方向平移一定的距离来得到另一个与其平行的平面。

方程形式

如果给定一个平面方程 A x + B y + C z + D 1 = 0 Ax + By + Cz + D_1 = 0 Ax+By+Cz+D1=0,那么与它平行且距离为 d d d 的另一个平面方程可以表示为 A x + B y + C z + D 2 = 0 Ax + By + Cz + D_2 = 0 Ax+By+Cz+D2=0,其中 D 2 D_2 D2 是通过距离公式和原平面方程求得的。具体来说,如果知道点 ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0) 在原平面上,且新平面与该点的距离为 d d d,则 D 2 D_2 D2 可以通过下式求得:

D 2 = − ( A x 0 + B y 0 + C z 0 ) ± d A 2 + B 2 + C 2 D_2 = -(Ax_0 + By_0 + Cz_0) \pm d\sqrt{A^2 + B^2 + C^2} D2=(Ax0+By0+Cz0)±dA2+B2+C2

其中,正负号取决于新平面是沿法向量正方向还是负方向平移。

然而,在实际应用中,通常不需要显式地求出 D 2 D_2 D2。相反,可以通过已知平面上的一个点和法向量,以及平移的距离和方向,来直接构造新平面的方程。

示例

假设有一个平面方程为 x + y + z = 1 x + y + z = 1 x+y+z=1,且知道与该平面平行且距离为 2 的另一个平面。为了找到这个新平面的方程,我们可以选择原平面上的一个点(例如,(1,0,0)),计算它到新平面的距离(即2),并沿法向量方向(即(1,1,1))平移。但由于平移的距离是已知的,我们实际上可以直接写出新平面的方程为 x + y + z + D 2 = 0 x + y + z + D_2 = 0 x+y+z+D2=0,其中 D 2 D_2 D2 是通过距离和法向量计算得出的一个常数。在这个特定情况下,由于原平面过原点且法向量为单位向量,新平面的方程可以简化为 x + y + z = ± 2 3 − 1 x + y + z = \pm 2\sqrt{3} - 1 x+y+z=±23 1(取决于平移的方向)。但请注意,这里的 ± 2 3 \pm 2\sqrt{3} ±23 是因为距离公式中的 A 2 + B 2 + C 2 \sqrt{A^2 + B^2 + C^2} A2+B2+C2 项对于单位法向量(1,1,1)来说是 3 \sqrt{3} 3 ,而平移距离是2,所以总距离是 2 3 2\sqrt{3} 23 。然而,由于原平面方程是 x + y + z = 1 x + y + z = 1 x+y+z=1,所以新平面的方程实际上是 x + y + z = 1 ± 2 3 x + y + z = 1 \pm 2\sqrt{3} x+y+z=1±23 的形式,但这里我们需要考虑到原平面已经过原点,所以实际上应该是 x + y + z = − 1 + 2 3 x + y + z = -1 + 2\sqrt{3} x+y+z=1+23 x + y + z = − 1 − 2 3 x + y + z = -1 - 2\sqrt{3} x+y+z=123 (取决于平移是沿着法向量的正方向还是负方向)。然而,更简单的做法是直接认识到新平面与原平面的差异仅在于常数项,因此新平面的方程可以写为 x + y + z = k x + y + z = k x+y+z=k,其中 k k k 是通过距离和原平面方程确定的常数(在这个例子中, k k k 不会是 ± 2 3 − 1 \pm 2\sqrt{3} - 1 ±23 1,因为这是一个特定的计算结果,而实际情况会根据原平面的方程和平移的距离而有所不同)。正确的做法是使用点到平面的距离公式来求解 k k k

平行于 x o y xoy xoy面的平面

是指其法向量与 z z z轴平行(即法向量的 z z z分量不为零,而 x x x y y y分量为零)的平面。这样的平面在三维坐标系中具有一些特定的性质。

方程形式

平行于 x o y xoy xoy面的平面方程可以表示为:

z = 常数 z = \text{常数} z=常数

这是因为平面的法向量与 z z z轴平行,意味着平面在 z z z轴方向上没有变化,即平面上的所有点的 z z z坐标都相同。

性质

  1. 法向量:平行于 x o y xoy xoy面的平面的法向量与 z z z轴平行,通常可以选择为 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1) ( 0 , 0 , − 1 ) (0, 0, -1) (0,0,1)

  2. x o y xoy xoy面的关系:由于平面的法向量与 z z z轴平行,平面可以看作是 x o y xoy xoy平面在 z z z轴方向上的平移。

  3. 平面内的向量:平面内的任意两个点的连线向量都在平面内,且这些向量的 z z z分量都相同。

  4. 点到平面的距离:对于平行于 x o y xoy xoy面的平面,点到平面的距离可以通过计算点在 x o y xoy xoy平面上的投影到平面的距离来得到。这个距离实际上就是点在 z z z轴方向上与平面的距离。

  5. 与坐标轴的关系:平行于 x o y xoy xoy面的平面与 x x x轴和 y y y轴平行,但与 z z z轴垂直。

示例

  • z = 5 z = 5 z=5 是一个平行于 x o y xoy xoy面的平面方程。它表示所有 z z z坐标为5的点构成的平面。
  • 同样地, z = − 3 z = -3 z=3 也是一个平行于 x o y xoy xoy面的平面方程,表示所有 z z z坐标为-3的点构成的平面。

平行于 x o y xoy xoy面的平面在三维空间中非常常见,特别是在描述物体的运动、位置或形状时。例如,在建筑设计中,楼层平面通常就是平行于 x o y xoy xoy面的;在机器人学中,机器人的工作平面也可能是一个平行于 x o y xoy xoy面的平面。

参考文献

  1. 文心一言
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值