33、变分问题的直接方法及算子方程特征值求解

变分问题的直接方法及算子方程特征值求解

1. 变分问题中的能量推导

在变分问题里,对能量 (E) 关于 (a) 求导,并令导数为零,可解得 (a = \frac{m\omega}{2h})。把 (a = \frac{m\omega}{2h}) 代入能量和坐标函数表达式,就能分别得到最小能量 (E) 和基态波函数 (\phi(x)):
- 最小能量 (E):
[E = \frac{h^2}{2m}\frac{m\omega}{2h} + \frac{m\omega^2}{8}\frac{2h}{m\omega} = \frac{h\omega}{2}]
- 基态波函数 (\phi(x)):
[\phi(x) = \left(\frac{2a}{\pi}\right)^{\frac{1}{4}}e^{-ax^2} = \left(\frac{m\omega}{\pi h}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2h}x^2}]

这与解析解是一致的。

2. 最小二乘法

2.1 最小二乘法原理

在特定方程里,若所选权函数 (W_{vi}) 等于残差 (R_v) 关于待定参数 (a_i) 的导数,即 (W_{vi} = \frac{\partial R_v}{\partial a_i}),且 (R_v = T u_n - f)((f) 不含 (a_i)),则有:
[\int_{V} R_v\frac{\partial R_v}{\partial a_i}dV = \int_{V} (T u_n - f)\frac{\partial T u_n}{\par

【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号与b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)与a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据类,UCI上下载的iris数据,适当调整误差精度,类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值与真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
【源码免费下载链接】:https://renmaiwang.cn/s/mz20w ### 数字万用表二极管档测试原理与使用技巧详解#### 一、测试原理概览数字万用表的二极管档是专为检测半导体元件如二极管设计的功能之一,它能准确判断二极管的好坏以及测量其正向压降。与传统的模拟式万用表相比,数字万用表的这一功能更为精确和直观。其工作原理基于向二极管施加一定电压并测量流过的电流,从而判断二极管的导通状态。#### 二、数字万用表二极管档的工作原理在讨论具体工作原理之前,我们先了解数字万用表二极管档与普通电阻档的区别。普通电阻档提供的测试电流较小,不足以充激活半导体元件的PN结,导致测量结果不准确。然而,二极管档设计时考虑了这一问题,提供了更大的测试电流,确保了对半导体元件特性的有效评估。以DT830型数字万用表为例,其二极管档电路设计巧妙,提供约2.8V的基准电压,通过精密的压电路确保电流适中,既不会损坏二极管也不会导致测量失准。具体电路中,基准电压源通过一系列电阻(如R17、R18等)压后,向被测二极管VD提供测试电流。在没有接入二极管的情况下,电路中的A、B两点电压会稳定在特定值;一旦接入二极管,A点电压会被箝位至二极管的正向压降,大约0.7V(硅管)或0.3V(锗管)。此时,流入二极管的电流约为1mA(硅管)或1.3mA(锗管),足以激活二极管而不致于损害它。#### 三、安全保护机制值得注意的是,数字万用表在设计二极管档时还融入了安全保护机制。例如,当误将二极管档用于测量市电电压(AC220V)时,电路中设置的保护元件(如热敏电阻PTC和晶体管Q1、Q2)会启动,限制电流,避免对仪表造成损害。这种设计不仅提升了仪表的可靠性,也增强了操作者的安全性。#### 四、二极管档的使用技巧掌握正确的使用方法是发挥数字万用表二极管档优势的关键。以下是使用步骤:1. **连接仪
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值