变分问题的直接方法及算子方程特征值求解
1. 变分问题中的能量推导
在变分问题里,对能量 (E) 关于 (a) 求导,并令导数为零,可解得 (a = \frac{m\omega}{2h})。把 (a = \frac{m\omega}{2h}) 代入能量和坐标函数表达式,就能分别得到最小能量 (E) 和基态波函数 (\phi(x)):
- 最小能量 (E):
[E = \frac{h^2}{2m}\frac{m\omega}{2h} + \frac{m\omega^2}{8}\frac{2h}{m\omega} = \frac{h\omega}{2}]
- 基态波函数 (\phi(x)):
[\phi(x) = \left(\frac{2a}{\pi}\right)^{\frac{1}{4}}e^{-ax^2} = \left(\frac{m\omega}{\pi h}\right)^{\frac{1}{4}}e^{-\frac{m\omega}{2h}x^2}]
这与解析解是一致的。
2. 最小二乘法
2.1 最小二乘法原理
在特定方程里,若所选权函数 (W_{vi}) 等于残差 (R_v) 关于待定参数 (a_i) 的导数,即 (W_{vi} = \frac{\partial R_v}{\partial a_i}),且 (R_v = T u_n - f)((f) 不含 (a_i)),则有:
[\int_{V} R_v\frac{\partial R_v}{\partial a_i}dV = \int_{V} (T u_n - f)\frac{\partial T u_n}{\par
订阅专栏 解锁全文
34

被折叠的 条评论
为什么被折叠?



