特征缩放

版权声明:无需授权,可任意转载。 https://blog.csdn.net/saltriver/article/details/76100059

在某些机器学习算法中,特征缩放是特征预处理的一个重要步骤。

一、为什么要特征缩放

举个例子,我们收集了一些人的个人数据,包括身高、体重、腰围等。这些人的特征数据有着不同的规格,取值范围也可能相差悬殊, 比如身高一般在1.5米-2米之间,体重一般在40公斤到100公斤之间,腰围一般在2尺和3.5尺之间。

我们给出3个人的数据:

序号 身高 体重 腰围 衣服尺码
1 1.75 72 2.8 L
2 1.60 55 2.4 S
3 1.72 62 2.7 ?

现在你预测第3个人的衣服尺码是L还是S?显然你来判断的话肯定是L,因为第3个人与第1个人的数据比较接近。但是机器学习算法可不这么认为,它只知道数据,并不知道数据的具体含义,假设机器学习算法的度量值是将身高、体重、腰围相加。那么第一个人的度量值是1.75+72+2.8=76.55,第二个人的度量值是1.60+55+2.4=59.66,第三个人的度量值是1.72+62+2.7=66.42。
66.42更接近于59.66,所以机器学习算法会把第3个人的衣服尺码预测成S。

这是因为体重这个特征比身高、腰围这2个特征有更大的范围值,那么最终的度量值将会被体重这个特征值所主导。也即这3个特征的取值非常不平衡。

但是我们希望这些特征能够得到同等的重视,此时就需要用到特征缩放。

二、什么是特征缩放

特征缩放就是标准化数据特征的范围,从而使得每个特征的范围有可比性,比如将取值范围处理为0到1之间。

通过特征缩放后,身高、体重、腰围的数值都在0和1之间,数值的单位不再是以前的含义,但包含的信息不会遗漏,只是缩小了取值范围。

三、怎样特征缩放

特征缩放非常简单易懂,只有一个公式,把相关的数据代入计算即可。

x=xxminxmaxxmin

Xmin是特征X的取值范围的最小值,Xmax是特征X的取值范围的最大值。

例如身高,最低是1.5米,最高是2米。那么身高1.75米特征缩放后的值为:(1.75-1.5)/(2-1.5)=0.5;体重最低40公斤,最高100公斤,那么体重72公斤对应的特征缩放值为:(72-40)/(100-40)=0.533;腰围最低2尺,最高3.5尺,那么腰围2.8尺对应的特征缩放值为:(2.8-2)/(3.5-2)=0.533;

我们进行特征缩放后,得到这3个人的特征数据为:

序号 身高 体重 腰围 度量值 衣服尺码
1 0.5 0.533 0.533 1.566 L
2 0.2 0.25 0.267 0.717 S
3 0.44 0.367 0.467 1.274 ?

因为第3个人的度量值与第1个人的更接近,这时显然机器学习算法会预测第3个人的衣服尺码为L。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试