数学分析-问题集(1~100)

  1. 由自然对数的基地常数:
    e = lim ⁡ n → ∞ ( 1 + 1 n ) n = lim ⁡ n → ∞ ( 1 + 1 n ) n + 1 = lim ⁡ n → ∞ ∑ k = 0 n 1 k ! e = \lim\limits_{n\rarr\infty}{(1+\frac{1}{n})^n} = \lim\limits_{n\rarr\infty}{(1+\frac{1}{n})^{n+1} = \lim\limits_{n\rarr\infty}{\sum\limits_{k=0}^{n}{\frac{1}{k!}}}} e=nlim(1+n1)n=nlim(1+n1)n+1=nlimk=0nk!1
    推导出欧拉常数 γ \gamma γ
    γ = lim ⁡ n → ∞ ∑ k = 1 n 1 k − ln ⁡ n \gamma = \lim\limits_{n\rarr\infty} { \sum\limits_{k=1}^{n} {\frac{1}{k}}-\ln{n} } γ=nlimk=1nk1lnn

  2. 求极限 lim ⁡ n → ∞ ∑ k = 1 n 1 k + n \lim\limits_{n\rarr\infty}{\sum\limits_{k=1}^{n}{\frac{1}{k+n}}} nlimk=1nk+n1 (可利用欧拉常数)

  3. 描述和解释上极限下极限

  4. 描述于有界数列 { a n } \{a_n\} {an} 收敛等价的两个命题

  5. { a n } \{a_n\} {an} { b n } \{b_n\} {bn} 为有界数列。

    1. 如果 ∃ N 0 \exist N_0 N0,当 n > N 0 n > N_0 n>N0时, a n ≥ b n a_n \geq b_n anbn,则
      lim ⁡ n → ∞ ‾ a n ≥ lim ⁡ n → ∞ ‾ b n , lim ⁡ n → ∞ ‾ a n ≥ lim ⁡ n → ∞ ‾ b n , \lim\limits_{\overline{n\rarr\infty}}{a_n} \geq \lim\limits_{\overline{n\rarr\infty}}{b_n}, \overline{\lim\limits_{n\rarr\infty}}{a_n} \geq \overline{\lim\limits_{n\rarr\infty}}{b_n}, nlimannlimbnnlimannlimbn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值