-
由自然对数的基地常数:
e = lim n → ∞ ( 1 + 1 n ) n = lim n → ∞ ( 1 + 1 n ) n + 1 = lim n → ∞ ∑ k = 0 n 1 k ! e = \lim\limits_{n\rarr\infty}{(1+\frac{1}{n})^n} = \lim\limits_{n\rarr\infty}{(1+\frac{1}{n})^{n+1} = \lim\limits_{n\rarr\infty}{\sum\limits_{k=0}^{n}{\frac{1}{k!}}}} e=n→∞lim(1+n1)n=n→∞lim(1+n1)n+1=n→∞limk=0∑nk!1
推导出欧拉常数 γ \gamma γ:
γ = lim n → ∞ ∑ k = 1 n 1 k − ln n \gamma = \lim\limits_{n\rarr\infty} { \sum\limits_{k=1}^{n} {\frac{1}{k}}-\ln{n} } γ=n→∞limk=1∑nk1−lnn -
求极限 lim n → ∞ ∑ k = 1 n 1 k + n \lim\limits_{n\rarr\infty}{\sum\limits_{k=1}^{n}{\frac{1}{k+n}}} n→∞limk=1∑nk+n1 (可利用欧拉常数)
-
描述和解释上极限和下极限
-
描述于有界数列 { a n } \{a_n\} {an} 收敛等价的两个命题
-
设 { a n } \{a_n\} {an} { b n } \{b_n\} {bn} 为有界数列。
- 如果
∃
N
0
\exist N_0
∃N0,当
n
>
N
0
n > N_0
n>N0时,
a
n
≥
b
n
a_n \geq b_n
an≥bn,则
lim n → ∞ ‾ a n ≥ lim n → ∞ ‾ b n , lim n → ∞ ‾ a n ≥ lim n → ∞ ‾ b n , \lim\limits_{\overline{n\rarr\infty}}{a_n} \geq \lim\limits_{\overline{n\rarr\infty}}{b_n}, \overline{\lim\limits_{n\rarr\infty}}{a_n} \geq \overline{\lim\limits_{n\rarr\infty}}{b_n}, n→∞liman≥n→∞limbn,n→∞liman≥n→∞limbn,
- 如果
∃
N
0
\exist N_0
∃N0,当
n
>
N
0
n > N_0
n>N0时,
a
n
≥
b
n
a_n \geq b_n
an≥bn,则
数学分析-问题集(1~100)
最新推荐文章于 2023-07-19 11:21:13 发布