189_NTC负温度系数热敏电阻

NTC是指负温度系数热敏电阻,其阻值随温度升高而下降。相比正温度系数的PT100Cu50等,其灵敏度较高,但是线性度较差。

 

功率型NTC热敏电阻多用于电源抑制浪涌。抑制浪涌用NTC热敏电阻器,是一种大功率的圆片式热敏电阻器,常用于有电容器、加热器和马达启动的电子电路中。

在电路电源接通瞬间,电路中会产生比正常工作时高出许多倍的浪涌电流,而NTC热敏电阻器的初始阻值较大,可以抑制电路中过大的电流,从而保护其电源电路及负载。

当电路进入正常工作状态时,热敏电阻器由于通过电流而引起阻体温度上升,电阻值下降至很小,不会影响电路的正常工作。

NTC热敏电阻器抑制浪涌电路分析

NTC热敏电阻器是负温度系数的,温度升高后阻值下降。如图示是NTC热敏电阻器抑制浪涌电路,这是PC开关电源中的抑制浪涌的应用电路,电路中的NTCR1是NTC热敏电阻器,用来抑制开机时的浪涌电流。

NTC热敏电阻器抑制浪涌电路

1. 抑制浪涌的原因

在PC冷启动时会产生一个很大的浪涌电流,即交流220V市电会给PC一个很大的开机冲击电流,这一很大的浪涌电流有可能烧毁电源和主机内部电路,为此要设置一个抑制浪涌的电路,使PC开机时抑制浪涌电流较小,而在开机后又能恢复正常的220V供电状态。

2. NTC热敏电阻器位置

打开PC的开关电源外壳,在外侧可以发现一只圆片型陶瓷电容,通常是橄榄绿色。它就是用来抑制浪涌电流的NTC热敏电阻器,如图所示。

3. 电路分析

从电路中可以看出,NTCR1串联在220V供电回路中,作为220V交流市电负载的一部分。在PC冷启动时,由于NTCR1在常温下(零功率)阻值较大,这样限制了开机时220V回路的电流,使之不能太大。

在开机后,电流流过NTCR1,使其温度升高,阻值开始下降。在PC开机很短时间后,NTCR1电阻器温度上升到工作区间,其阻值下降到很低的数值,可以忽略不计。这时220V市电供电进入正常状态,这时NTCR1阻值很小,也不会产生过多的功耗。

这种抑制浪涌电路也有缺点,例如,当关断电源后快速重启动时,热敏电阻还未完全冷却,会丧失部分浪涌抑制功能,这也就是为何短暂地关掉又开启电源是有害操作的原因。

<think>好的,用户想了解NTC热敏电阻的工作原理。首先,我需要回顾之前提供的回答和引用内容,确保信息准确且一致。用户之前已经询问过热敏电阻的工作原理,现在特别关注NTC类型。 根据用户提供的引用[1],NTC电源电路中用于限制浪涌电流,温度升高时电阻减小,工作时发热导致电阻降低,但功耗不能忽略。此外,引用[2]提到NTC的阻值与温度的关系,比如10KΩ对应25℃,并涉及数据表和温度转换方法。之前的回答中已经解释了NTC的半导体材料和载流子浓度的变化机制,以及示例Python代码。 现在需要整合这些信息,用清晰的结构解释NTC的工作原理。可能需要分点说明材料特性、温度响应机制、应用场景,以及数学表达式。确保使用正确的LaTeX格式,如$R_T = R_0 e^{\beta (1/T - 1/T_0)}$,并引用相关文献。 还要注意用户可能的应用需求,比如温度测量或浪涌抑制,因此需要强调实际应用中的关键参数,如β值和参考电阻。此外,用户可能对温度转换的具体方法感兴趣,可以提及分压电路和查表法或公式计算法,如Steinhart-Hart方程。 需要检查是否有遗漏点,例如NTC的缺点,比如自发热影响精度,以及如何补偿。同时,确保回答与之前的回答和引用一致,避免矛盾。最后生成相关问题,帮助用户深入理解,如材料选择、温度补偿方法或实际应用案例。</think>### NTC热敏电阻工作原理详解 NTC负温度系数热敏电阻的核心特性是**电阻值随温度升高呈指数型下降**,其工作机制基于半导体材料的物理特性。以下是具体原理分点阐述: --- #### 1. **材料结构与导电机制** NTC由过渡金属氧化物(如锰、钴、镍的氧化物)烧结而成的半导体陶瓷构成。在低温时,材料内部的**自由电子浓度较低**,原子晶格束缚较强,导致电阻较高。随着温度升高: - **热激发效应**:更多电子获得足够能量跃迁至导带,形成导电载流子; - **载流子迁移率提升**:晶格振动加剧反而可能阻碍迁移,但载流子浓度上升起主导作用[^1]。 --- #### 2. **温度-电阻数学模型** NTC的电阻-温度关系遵循**阿伦尼乌斯方程**: $$ R_T = R_0 \cdot e^{\beta \left( \frac{1}{T} - \frac{1}{T_0} \right)} $$ 其中: - $R_T$:温度$T$(开尔文)时的电阻值 - $R_0$:参考温度$T_0$(通常为25℃即298.15K)的标称阻值 - $\beta$:材料常数(典型值为2000-5000K),反映材料对温度的敏感度 例如,型号为CMFA103J3950HANT的NTC热敏电阻,其$R_0=10k\Omega$(25℃),$\beta=3950K$[^2]。 --- #### 3. **动态响应特性** - **自发热现象**:当电流通过NTC时,焦耳热($P=I^2R$)会导致器件自身温度上升,引发阻值下降。这一特性在**浪涌电流抑制**中至关重要: 1. 设备启动瞬间,冷态NTC高电阻限制浪涌电流; 2. 持续工作时,自发热降低电阻,减少功率损耗[^1]。 - **热时间常数**:表征NTC响应温度变化的速度,典型值为数秒至数十秒,影响其在快速测温场景的适用性。 --- #### 4. **应用场景与设计要点** - **温度测量**:通过分压电路将阻值变化转换为电压信号,需配合**查表法**或**Steinhart-Hart方程**进行非线性校准: $$ \frac{1}{T} = A + B \ln R + C (\ln R)^3 $$ - **浪涌抑制**:在电源输入端串联NTC,需计算稳态工作时的功耗是否可接受; - **补偿电路**:利用其温度敏感性抵消其他元件的温漂,如晶体管偏置电路。 --- #### 5. **关键参数选择** | 参数 | 典型值范围 | 设计影响 | |------------|------------------|------------------------------| | $R_{25℃}$ | 1kΩ-100kΩ | 决定分压电路基准电压 | | $\beta$值 | 3000K-4500K | 影响温度测量灵敏度 | | 耗散系数 | 1-10mW/℃ | 决定自发热引起的测量误差 | | 最大电流 | 10mA-1A | 限制浪涌抑制场景的适用功率等级 | --- ```python def ntc_temp_calculation(adc_value, v_ref=3.3, r_fixed=10e3): """ 通过ADC采样值计算NTC温度(假设固定电阻分压电路) 参数: adc_value (int): ADC采样值(12位分辨率) v_ref (float): 参考电压 r_fixed (float): 分压电路固定电阻值 返回: float: 温度值(摄氏度) """ v_ntc = (adc_value / 4095) * v_ref r_ntc = r_fixed * (v_ref / v_ntc - 1) # 使用简化β参数公式计算温度 t_kelvin = 1 / ( (1/298.15) + (1/3950)*np.log(r_ntc/10000) ) return t_kelvin - 273.15 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值