ml
文章平均质量分 70
sand_13
这个作者很懒,什么都没留下…
展开
-
Coursera——Machine Learning (linear Regression) week2 编程作业答案
1、warmUpExercise.m:输出一个5*5的单位矩阵(identity matrix)function A = warmUpExercise()%WARMUPEXERCISE Example function in octave% A = WARMUPEXERCISE() is an example function that returns the 5x5 identi...原创 2018-04-10 22:46:46 · 406 阅读 · 0 评论 -
Coursera 机器学习 week4(神经网络)作业
在完成作业之前,我们很有必要知道一些Octave的语法,才能看懂作业要求。 1、randperm:生成随机序列 A=[2,3,4,5]A = 2 3 4 5>> rand_indices=randperm(length(A))rand_indices = 1 4 2 3>> A(:,rand_indices(1:...原创 2018-04-22 10:33:24 · 823 阅读 · 0 评论 -
Coursera 机器学习 Logistic Regression编程作业
首先这次作业包含以下几个文件,带*号的是需要我们补充完整的。 然后根据提供的PDF文档,依次完成。 1、Visualizing the data(数据可视化) 这个代码PDF文档里直接提供了,只需要把它复制到plotData.m中就行。 使用plot绘图:X为数据矩阵,每一列代表一个特征(这里是一个m*2维矩阵,即2元特征);y为数据结果向量(m*1维),y的取值为0或1。% po...原创 2018-04-13 17:01:15 · 737 阅读 · 0 评论 -
Coursera机器学习 week5(神经网络反向传播)编程作业
这周主要讲的是给定训练集下,为神经网络拟合参数的学习算法。 1、代价函数 由于在神经网络中可能会有多个输出结点,hΘ(x)k代表第k个输出的假设,所以神经网络的代价函数相当于是逻辑回归的代价函数的求和。 (没有正规化的公式,K表示输出结点的数量) 2、使用梯度下降求代价函数最小值,计算梯度就要求偏导,而BP反向传播法是一种有效的求偏导的方法。 (1)前向传播: 2、从后向前计算...原创 2018-04-25 22:18:55 · 643 阅读 · 0 评论