sklearn数值特征之时间处理

本文介绍了在sklearn中处理时间特征的方法,包括使用Timestamp对象表示时间,利用pd.cut进行时间区间划分,以及对时间数据的其他相关操作。示例展示了不同时区的时间戳,并提到了pd.qcut作为另一种时间分桶的函数。详细教程链接提供了更多关于时间特征的操作细节。
摘要由CSDN通过智能技术生成
import pandas as pd
import numpy as np
import datetime
from dateutil.parser import parse 
# parse根据字符串解析成datetime,字符串可以很随意,可用时间日期的英文单词,可用横线,逗号,空格等做分隔符
import pytz # 时区

time_stamps = ['2015-03-08 10:30:00.360000+00:00', '2017-07-13 15:45:05.755000-07:00',
               '2012-01-20 22:30:00.254000+05:30', '2016-12-25 00:30:00.000000+10:00']
df = pd.DataFrame(time_stamps, columns = ['Time'])
df

在这里插入图片描述

ts_objs = np.array([pd.Timestamp(item) for item in np.array(df.Time)])
df['Ts_obj'] = ts_objs
print(ts_objs)
df

[Timestamp(‘2015-03-08 10:30:00.360000+0000’, tz=‘UTC’)
Timestamp(‘2017-07-13 15:45:05.755000-0700’, tz=‘pytz.FixedOffset(-420)’)
Timestamp(‘2012-01-20 22:30:00.254000+0530’, tz=‘pytz.FixedOffset(330)’)
Timestamp(‘2016-12-25 00:30:00+1000’, tz=‘pytz.FixedOffset(600)’)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值