LightGBM预测饭店流量2: lightgbm建模与预测

本文介绍了使用LightGBM进行饭店流量预测的建模过程,通过K Fold交叉验证方法,得到平均RMSLE为0.73270,详细展示了每个fold的误差,并提供了进一步学习LightGBM的资源。
摘要由CSDN通过智能技术生成

接上一篇:
<LightGBM预测饭店流量1: 数据处理>

LIghtGBM建模

  • model_selection.KFold()
    K折交叉验证, 将训练/测试数据集划分n_splits个互斥子集,每次用其中一个子集当作验证集,剩下的n_splits-1个作为训练集,进行n_splits次训练和测试,得到n_splits个结果
import numpy as np
import pandas as pd
import lightgbm as lgbm
from sklearn import metrics
from sklearn import model_selection

np.random.seed(42)

model = lgbm.LGBMRegressor(objective='regression', max_depth=5, num_leaves=25, learning_rate=0.007,
						  n_estimators=1000, min_child_samples=80, subsample=0.8, colsample_bytree=1,
						  reg_alpha=0, reg_lambda<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值