networkx使用起来非常方便,常被用来做一些实例性的分析和可视化展示的,这需要学会如何灵活的画图。
一 整体画图
只需要一个图片,可以使用nx.draw()
二 精确画图
1 按照先节点、再标签、再连边的步骤,依次绘图。
pos=nx.spring_layout(G) # 生成节点位置信息
plt.rcParams['figure.figsize']= (6, 4) # 设置画布大小,600*400
nx.draw_networkx_nodes(G,pos) # 画节点
nx.draw_networkx_edges(G,pos) # 画边
nx.draw_networkx_labels(G,pos,labels) # 画标签
plt.axis('off') # 去掉坐标刻度
# 保存并显示图片
plt.savefig("ARPA.png")
plt.show()
2 实际操作过程中,经常需要对节点位置进行布局
例如,进行聚类后,希望同类节点能画在一起
关键代码:pos=nx.spring_layout(G)
- 常用 pos 的取值有:
pos=nx.circular_layout(G) # 生成圆形节点布局
pos=nx.random_layout(G) # 生成随机节点布局
pos=nx.shell_layout(G) # 生成同心圆节点布局
pos=nx.spring_layout(G) # 利用Fruchterman-Reingold force-directed算法生成节点布局
pos=nx.spectral_layout(G) # 利用图拉普拉斯特征向量生成节点布局
pos=nx.kamada_kawai_layout(G) #使用Kamada-Kawai路径长度代价函数生成布局
- pos实际就是一个字典:
pos = {
'成长': [194.24502547929586, 190.35614988034322],
'太宰': [170.46126328823433, 175.52941500430708],
'人间': [193.3459273218009, 203.09119125315576],
'问题': [154.79251002996543, 220.7467591325482],
'失格': [116.28566995164307, 257.94930595020685],
'前面': [31.5065328561581, 186.2037997097774],
'时代': [104.27471121977163, 204.4882718198937]
}
可以对pos进行赋值,获得理想的节点布局。