networkx 画图布局

networkx使用起来非常方便,常被用来做一些实例性的分析和可视化展示的,这需要学会如何灵活的画图。

一 整体画图

只需要一个图片,可以使用nx.draw()

二 精确画图

1 按照先节点、再标签、再连边的步骤,依次绘图。

pos=nx.spring_layout(G)                     # 生成节点位置信息 
plt.rcParams['figure.figsize']= (6, 4)      # 设置画布大小,600*400
nx.draw_networkx_nodes(G,pos)               # 画节点
nx.draw_networkx_edges(G,pos)               # 画边
nx.draw_networkx_labels(G,pos,labels)       # 画标签 

plt.axis('off')                             # 去掉坐标刻度  
# 保存并显示图片
plt.savefig("ARPA.png")
plt.show()

2 实际操作过程中,经常需要对节点位置进行布局

例如,进行聚类后,希望同类节点能画在一起
关键代码:pos=nx.spring_layout(G)

  • 常用 pos 的取值有:
pos=nx.circular_layout(G)          # 生成圆形节点布局
pos=nx.random_layout(G)            # 生成随机节点布局
pos=nx.shell_layout(G)             # 生成同心圆节点布局
pos=nx.spring_layout(G)            # 利用Fruchterman-Reingold force-directed算法生成节点布局
pos=nx.spectral_layout(G)          # 利用图拉普拉斯特征向量生成节点布局
pos=nx.kamada_kawai_layout(G)      #使用Kamada-Kawai路径长度代价函数生成布局
  • pos实际就是一个字典:
pos = {
'成长': [194.24502547929586, 190.35614988034322], 
'太宰': [170.46126328823433, 175.52941500430708], 
'人间': [193.3459273218009, 203.09119125315576], 
'问题': [154.79251002996543, 220.7467591325482], 
'失格': [116.28566995164307, 257.94930595020685], 
'前面': [31.5065328561581, 186.2037997097774], 
'时代': [104.27471121977163, 204.4882718198937]
}

可以对pos进行赋值,获得理想的节点布局。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

过尽的风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值