洗牌算法(Fisher–Yates Shuffle and Knuth-Durstenfeld Shuffle)

一、Fisher–Yates Shuffle

1、算法思想:

        从原始数组中随机抽取一个新的数字到新数组。

2、算法描述:

  • 初始化原始数组和新数组,原始数组长度为n(已知);
  • 针对未处理的原始数组元素(假如还剩k个),随机产生一个[0, k)之间的数字p(假设数组从0开始);
  • 从原始数组剩下的k个数中把第p个数取出,放入新数组;
  • 重复步骤(2)和(3)直到数字全部取完;
  • 取出的数字序列(新数组)便是一个打乱了的数列。

3、时间复杂度:

        O(n^2)

4、C++代码实现:

vector<int> Fisher_Yates(vector<int> &nums)
{
    srand((unsigned)time(NULL));
    vector<int> res;
    int p;
    for(int i=0;i<nums.size();++i)
    {
        p=rand()%nums.size();//k为nums.size()
        res.push_back(nums.size);
        nums.erase(nums.begin()+p);
    }
    return res;
}

二、Knuth-Durstenfeld Shuffle

1、算法思想:

        Knuth和Durstenfeld在Fisher等人的基础上对算法进行了改进,在原始数组上对数字进行交互,省去了额外O(n)的空间。该算法的基本思想和 Fisher 类似,每次从未处理的数据中随机取出一个数字,然后把该数字放在原来数组的尾部,即该数组尾部存放的是已经处理过的数字。

2、算法描述:

  • 初始化一个大小为n的原始数组,假设数组拥有i+1个未经处理的元素,此时i+1=n;
  • 在[0,i]范围内,生成随机数p;
  • 交换原始数组第i个元素与第p个元素(下标从0开始);
  • i=i-1(原数组尾部位置已经随机处理完成,向前处理数组其他位置);
  • 重复(2)-(4)步,直至未经处理的元素全被处理。

3、时间复杂度:

        O(n)

4、C++代码实现:

void Knuth_Durstenfeld(vector<int> &nums)
{
    srand(unsigned(time(NULL)));
    for(int i=nums.size()-1;i>=0;--i)
    {
        int p=rand()%(i+1);//前i+1个元素未被处理过
        swap(nums[i],nums[p]);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

棱角码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值