UOJ 228 基础数据结构练习题 Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯   , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),有 m m m 个操作分三种:

  • add ⁡ ( l , r , k ) \operatorname{add}(l,r,k) add(l,r,k):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← a i + k a_i\gets a_i+k aiai+k.
  • sqrt ⁡ ( l , r ) \operatorname{sqrt}(l,r) sqrt(l,r):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← ⌊ a i ⌋ a_i\gets \lfloor \sqrt {a_i} \rfloor aiai .
  • query ⁡ ( l , r ) \operatorname{query}(l,r) query(l,r):求 ∑ i = l r a i \sum_{i=l}^r a_i i=lrai.

Limitations

1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1n,m105
1 ≤ l ≤ r ≤ n 1\le l\le r\le n 1lrn
1 ≤ a i , k ≤ 1 0 5 1\le a_i,k\le 10^5 1ai,k105

Solution

考虑 sqrt ⁡ \operatorname{sqrt} sqrt 操作怎么做.
显然当区间极差为 0 0 0 时,直接对整个区间开方.
但是有特殊情况 ⌊ x ⌋ + 1 = x + 1 \lfloor \sqrt x\rfloor + 1= \sqrt{x+1} x +1=x+1 ,例如:
原序列为 ( 65535 , 65536 , 65535 , 65536 , ⋯   ) (65535,65536,65535,65536,\cdots) (65535,65536,65535,65536,).
开三次平方后变成 ( 3 , 4 , 3 , 4 , ⋯   ) (3,4,3,4,\cdots) (3,4,3,4,),每次都是最坏复杂度.
然后可以 add ⁡ \operatorname{add} add 回去,于是就被卡成了 O ( n m ) O(nm) O(nm).
不过很好解决,若开方前后序列极差均为 1 1 1,那也直接进行开方.

Code

3.3 KB , 637 ms , 11.57 MB    (in   total,   C++20) 3.3\text{KB},637\text{ms},11.57\text{MB}\;\texttt{(in total, C++20)} 3.3KB,637ms,11.57MB(in total, C++20)

#include <bits/stdc++.h>
using namespace std;

using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;

template<class T>
bool chmax(T &a, const T &b){
	if(a < b){ a = b; return true; }
	return false;
}

template<class T>
bool chmin(T &a, const T &b){
	if(a > b){ a = b; return true; }
	return false;
}

namespace seg_tree {
	struct Node {
		int l, r;
		i64 max, min, sum, tag;
	};
	
	inline int ls(int u) { return 2 * u + 1; }
	inline int rs(int u) { return 2 * u + 2; }
	
	struct SegTree {
		vector<Node> tr;
		inline SegTree() {}
		inline SegTree(const vector<i64>& a) {
			const int n = a.size();
			tr.resize(n << 1);
			build(0, 0, n - 1, a);
		}
		
		inline void pushup(int u, int mid) {
			tr[u].sum = tr[ls(mid)].sum + tr[rs(mid)].sum;
			tr[u].max = max(tr[ls(mid)].max, tr[rs(mid)].max);
			tr[u].min = min(tr[ls(mid)].min, tr[rs(mid)].min);
		}
		
		inline void apply(int u, i64 tag) {
			tr[u].sum += tag * (tr[u].r - tr[u].l + 1);
			tr[u].min += tag;
			tr[u].max += tag;
			tr[u].tag += tag;
		}
		
		inline void pushdown(int u, int mid) {
			if (tr[u].tag) {
				apply(ls(mid), tr[u].tag);
				apply(rs(mid), tr[u].tag);
				tr[u].tag = 0;
			}
		}
		
		void build(int u, int l, int r, const vector<i64>& a) {
			tr[u].l = l, tr[u].r = r;
			if (l == r) return (void)(tr[u].sum = tr[u].min = tr[u].max = a[l]);
			const int mid = (l + r) >> 1;
			build(ls(mid), l, mid, a);
			build(rs(mid), mid + 1, r, a);
			pushup(u, mid);
		}
		
		void sqrt(int u, int l, int r) {
			if (tr[u].max == 1) return;
			if (l <= tr[u].l && tr[u].r <= r) {
				i64 tmin = std::sqrt(tr[u].min), tmax = std::sqrt(tr[u].max);
				if (tr[u].min == tr[u].max || 
				   (tmin + 1 == tmax && tr[u].min + 1 == tr[u].max)) {
					return apply(u, tmax - tr[u].max);
				}
			}
			const int mid = (tr[u].l + tr[u].r) >> 1;
			pushdown(u, mid);
			if (l <= mid) sqrt(ls(mid), l, r);
			if (r > mid) sqrt(rs(mid), l, r);
			pushup(u, mid);
		}
		
		void add(int u, int l, int r, i64 k) {
			if (l <= tr[u].l && tr[u].r <= r) return apply(u, k);
			const int mid = (tr[u].l + tr[u].r) >> 1;
			pushdown(u, mid);
			if (l <= mid) add(ls(mid), l, r, k);
			if (r > mid) add(rs(mid), l, r, k);
			pushup(u, mid);
		}
		
		i64 query(int u, int l, int r) {
			if (l <= tr[u].l && tr[u].r <= r) return tr[u].sum;
			const int mid = (tr[u].l + tr[u].r) >> 1;
			i64 res = 0;
			pushdown(u, mid);
			if (l <= mid) res += query(ls(mid), l, r);
			if (r > mid) res += query(rs(mid), l, r);
			return res;
		}
		
		inline void range_sqrt(int l, int r) { sqrt(0, l, r); }
		inline void range_add(int l, int r, i64 v) { add(0, l, r, v); }
		inline i64 range_sum(int l, int r) { return query(0, l, r); }
	};
}
using seg_tree::SegTree;

signed main() {
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	
	int n, m; scanf("%d %d", &n, &m);
	vector<i64> a(n);
	for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
	
	SegTree sgt(a);
	for (int i = 0, op, l, r, v; i < m; i++) {
		scanf("%d %d %d", &op, &l, &r), l--, r--;
		if (op == 1) {
			scanf("%d", &v);
			sgt.range_add(l, r, v);
		}
		else if (op == 2) sgt.range_sqrt(l, r);
		else printf("%lld\n", sgt.range_sum(l, r));
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值