Description
给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,⋯,an) 和常数 m m m,有 q q q 个操作分两种:
- add ( l , r , x ) \operatorname{add}(l,r,x) add(l,r,x):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← a i + x a_i\gets a_i+x ai←ai+x.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 ( xor i = l r a i ) m o d 2 m (\mathop{\operatorname{xor}}\limits_{i=l}^ra_i)\bmod 2^m (i=lxorrai)mod2m.
Limitations
1
≤
n
,
q
≤
1
0
5
1 \le n,q \le 10^5
1≤n,q≤105
1
≤
m
≤
10
\textcolor{red}{1\le m \le 10}
1≤m≤10
0
≤
a
i
,
x
<
2
m
0\le a_i,x<2^m
0≤ai,x<2m
0.5
s
,
256
MB
\textcolor{red}{0.5\text{s}},256\text{MB}
0.5s,256MB
Solution
m
m
m 很小,考虑基于值域的做法.
由于异或性质,我们只用维护一个数出现次数奇偶性,这可以压在一个
1024
1024
1024 位的 bitset
f
f
f 里,第
i
i
i 位表示
i
i
i 的出现次数奇偶性.
那么合并就是将两个 bitset
xor
\operatorname{xor}
xor 起来.
区间加
x
x
x 就是将
f
f
f 循环左移
x
x
x 次,可以写作:
f = (f >> (1024 - x)) | (f << x);
显然可用线段树维护,记得卡常,用 fastio
.
Code
4.63
KB
,
2.79
s
,
55.88
MB
(in
total,
C++20
with
O2)
4.63\text{KB},2.79\text{s},55.88\text{MB}\;\texttt{(in total, C++20 with O2)}
4.63KB,2.79s,55.88MB(in total, C++20 with O2)
fastio
和 lazy_segment
删了.
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
namespace fastio {} // Removed
using fastio::read;
using fastio::write;
template<class Info, class Tag>
struct lazy_segment{}; // Removed
constexpr int B = 1024, mask = 1023;
struct Tag {
int tag;
inline Tag() : tag(0) {}
inline Tag(int _tag) : tag(_tag) {}
inline void apply(const Tag& t) { tag += t.tag; tag &= mask; }
};
struct Info {
bitset<B> bs;
inline Info() {}
inline Info(int x) { bs.reset(); bs[x] = 1; }
inline void apply(const Tag& t) {
bs = (bs >> (B - t.tag)) | (bs << t.tag);
}
};
inline Info operator+(const Info& lhs, const Info& rhs) {
Info res;
res.bs = lhs.bs ^ rhs.bs;
return res;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
const int n = read<int>(), m = read<int>(), q = read<int>();
vector<int> a(n);
for (int i = 0; i < n; i++) a[i] = read<int>();
lazy_segment<Info, Tag> sgt(a);
for (int i = 0, op, l, r; i < q; i++) {
op = read<int>(), l = read<int>(), r = read<int>();
l--, r--;
if (op == 1) sgt.apply(l, r, read<int>());
else {
auto bs = sgt.query(l, r).bs;
int ans = 0;
for (int i = 0; i < B; i++) ans ^= bs[i] * i;
write(ans & ((1 << m) - 1));
putchar_unlocked('\n');
}
}
return 0;
}