Description
给定序列
a
=
(
a
1
,
a
2
,
⋯
,
a
n
)
a=(a_1,a_2,\cdots,a_n)
a=(a1,a2,⋯,an),处理
q
q
q 个查询
(
l
,
r
)
(l,r)
(l,r).
对每个查询求出
∑
[
s
,
t
]
∈
[
l
,
r
]
max
i
=
s
t
a
i
\sum\limits_{[s,t]\in [l,r]}\max\limits_{i=s}^t a_i
[s,t]∈[l,r]∑i=smaxtai.
Limitations
1
≤
n
,
q
≤
1
0
5
1\le n,q\le 10^5
1≤n,q≤105
∣
a
i
∣
≤
1
0
9
|a_i|\le 10^9
∣ai∣≤109
2
s
,
500
MB
2\text{s},500\text{MB}
2s,500MB
Solution
扫描线做法.
将询问离线,挂在
r
r
r 上,从
1
∼
n
1\sim n
1∼n 扫一遍,将子段转化为后缀.
我们用单调栈,在加入
a
i
a_i
ai 前弹掉所有
>
a
i
> a_i
>ai 的数,并维护一个序列
w
w
w.
设弹出了
p
p
p,弹出后栈顶为
q
q
q,则需要在
w
w
w 上把
(
q
,
p
]
(q,p]
(q,p] 减去
a
j
a_j
aj,加入
a
i
a_i
ai 时将
(
top
,
i
]
(\textit{top},i]
(top,i] 加上
a
i
a_i
ai.
维护完单调栈后,标记一个版本.
然后对每个
r
=
i
r=i
r=i 的查询,需要求
w
l
⋯
r
w_{l\cdots r}
wl⋯r 的历史和.
直接上 loj193 维护
w
w
w 即可.
Code
3.12
KB
,
0.96
s
,
16.91
MB
(in
total,
C++20
with
O2)
3.12\text{KB},0.96\text{s},16.91\text{MB}\;\texttt{(in total, C++20 with O2)}
3.12KB,0.96s,16.91MB(in total, C++20 with O2)
线段树删了.
#include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;
template<class T>
bool chmax(T &a, const T &b){
if(a < b){ a = b; return true; }
return false;
}
template<class T>
bool chmin(T &a, const T &b){
if(a > b){ a = b; return true; }
return false;
}
namespace seg_tree {}
using seg_tree::SegTree;
using pii = pair<int, int>;
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
int n, m;
scanf("%d %d", &n, &m);
vector<i64> a(n);
for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
vector<vector<pii>> adj(n);
for (int i = 0, l, r; i < m; i++) {
scanf("%d %d", &l, &r), l--, r--;
adj[r].emplace_back(l, i);
}
stack<int> stk;
SegTree sgt(n);
vector<i64> ans(m);
for (int i = 0; i < n; i++) {
while (!stk.empty() && a[stk.top()] > a[i]) {
int j = stk.top(); stk.pop();
if (stk.empty()) sgt.range_add(0, j, -a[j]);
else sgt.range_add(stk.top() + 1, j, -a[j]);
}
if (stk.empty()) sgt.range_add(0, i, a[i]);
else sgt.range_add(stk.top() + 1, i, a[i]);
stk.push(i);
sgt.apply(0, 0, 0, 1);
for (auto [j, id] : adj[i]) ans[id] = sgt.range_hsum(j, i);
}
for (int i = 0; i < m; i++) printf("%lld\n", ans[i]);
return 0;
}