数字化工厂的数据收集与处理
数字化工厂是现代化工厂,利用数字技术和数据分析提高效率和优化流程。数据分析作为数字化工厂的核心技术,对数据的获取与处理至关重要。在数字化工厂中,数据的来源包括企业内部信息系统、物联网信息以及外部信息,这些数据来源为实时、规模庞大且多样化的数据提供了基础。
数据的来源与特点
1.数据来源:
- 企业内部信息系统:如ERP、MES系统,提供关键生产数据。
- 物联网信息:设备传感器监测数据。
- 企业外部信息:与供应商和客户的数据交换,优化供应链。
2.数据特点:
- 实时性:来自传感器和设备的实时数据。
- 规模性:数据庞大,包括设备数据、生产指标等。
- 多样性:不同类型数据,如结构化、非结构化、时序、空间数据。
- 复杂性:数据清洗、处理、复杂关联分析的需求。
数据的类型
- 1.结构化数据:如传感器读数、产品质量指标。
- 2.非结构化数据:文本、图像、声音数据。
- 3.时序数据:按时间记录的数据,如温度读数。
- 4.空间数据:与地理位置相关,如设备位置。
数据获取技术与处理流程
数据获取技术包括传感器、物联网、自动识别、机器视觉、边缘计算和云计算技术。数据处理流程包括数据清洗、融合、分析和存储,确保数据质量和提取有价值信息。
数据处理技术
- 1.数据清洗:去重、缺失值处理、异常值检测。
- 2.数据融合:整合不同数据源,转换、标准化、实时数据流融合。
- 3.数据分析:描述性、探索性、预测和优化分析。
- 4.数据存储:关系型数据库、非关系型数据库、数据仓库和数据湖,支持后续查询和使用。
通过合理利用这些技术,数字化工厂可以从海量数据中获取有价值信息,支持生产决策和优化。数据驱动的数字化工厂将在智能制造领域持续发挥关键作用。
作者介绍:
90后资深架构师,深耕工业可视化,数字化转型,深度学习技术在工业中的应用。深入研究Web3D,SCADA ,深度学习开发应用。开发语言技能JAVA/C#/Python/Golang/Vue3/TypeScript, 关注【工业可视化】带你一起学~